1.sin66°-cos24°=0
2.cos257°+cos233°=1
Answers
Answer:
Given, sin66° - cos24° = 0
Need to prove the given equation as zero
⇒ we know that cos(90 - θ) = sinθ
∴ cos24° = cos(90 - 66)°
= sin66° - - - eq (1)
⇒ sin66° - cos24° = 0
[substitute eq(1)]
⇒ sin66° - sin66° = 0
Hence, LHS = RHS
EXPLANATION.
(1) = sin66° - cos24° = 0.
As we know that,
we can write cos 24° as,
⇒ cos24° = cos(90° - 66°).
⇒ sin66° - cos(90° - 66°).
⇒ sin66° - sin66°
⇒ 0.
HENCE PROVED.
(2) = cos²57° + cos²33° = 1.
As we know that,
we can write cos²33° as,
⇒ cos²33° = cos²(90° - 57°).
⇒ cos²57° + cos²(90° - 57°).
⇒ cos²57° + sin²57°.
⇒ 1.
HENCE PROVED.
MORE INFORMATION.
Fundamental trigonometric identities.
(1) = sin²∅ + cos²∅ = 1.
(2) = 1 + tan²∅ = sec²∅.
(3) = 1 + cot²∅ = cosec²∅.
Sign of trigonometric ratios of functions.
(1) = in first quadrant all are positive.
(2) = in second quadrant only [sin∅ and cosec∅] are positive.
(3) = in third quadrant [ tan∅ and cot∅ ] are positive.
(4) = in fourth quadrant [ cos∅ and sec∅ ] are positive.