Math, asked by Sara1305, 1 year ago

1+sina)(1+cosa)=5/4 then the value of (1-sina)(1-cosa) is equal to

Answers

Answered by LovelyG
15

Answer:

Given that ;

(1 + sinα)(1 + cosα) = \sf \dfrac{5}{4}

On multiplying both sides by (1 - sinα)(1 - cosα)

⇒ {(1 + sinα)(1 + cosα)}{(1 - sinα)(1 - cosα)} = \sf \dfrac{5}{4} * (1 - sinα)(1 - cosα)

⇒ (1 - sin²α)(1 - cos²α) = \sf \dfrac{5}{4} * (1 - sinα)(1 - cosα)

⇒ cos²α * sin²α = \sf \dfrac{5}{4} * (1 - sinα)(1 - cosα)

⇒ (1 - sinα)(1 - cosα) = \sf \dfrac{4}{5} ( cos²α sin²α )

\rule{300}{2}

Important identities used-

  • 1 - sin²θ = cos²θ
  • 1 - cos²θ = sin²θ
  • (a + b)(a - b) = a² - b²

Similar questions