Math, asked by tusharpanjwani2005, 10 months ago

(1 + SinA) (1-SinA)/
(1 + cos A) (1 - cos A)​

Answers

Answered by rishu6845
0

Answer:

Cot²A

Step-by-step explanation:

Given--->

(1 + SinA ) ( 1 - SinA ) / ( 1 + CosA ) ( 1 - CosA )

To find ---> Value of given expression

Solution---> ATQ,

( 1 + SinA ) ( 1 - SinA ) / ( 1 + CosA ) ( 1 - CosA )

We have an identity,

a² - b² = ( a + b ) ( a - b ) , applying it here , we get,

= { ( 1 )² - ( SinA )² } / { ( 1 )² - ( CosA )² }

We know that , 1 - Sin²θ = Cos²θ and

1 - Cos²θ = sin²θ , using it we get,

= ( 1 - Sin²A ) / ( 1 - Cos²A )

= Cos²A / Sin²A

= Cot²A

Additional information--->

1 ) Sin²θ + Cos²θ = 1

2) 1 + tan²θ = sec²θ

3) 1 + Cot²θ = Cosec²θ

Answered by Aɾꜱɦ
0

<font color =“orange”>

{ \huge \bf{ \mid{ \overline{ \underline{Answer}}} \mid}}

cot^2A

<body bgcolor= “purple” ><fontcolor=“white”>

#answerwithquality #bal

Similar questions