(1 + SinA) (1-SinA)/
(1 + cos A) (1 - cos A)
Answers
Answered by
0
Answer:
Cot²A
Step-by-step explanation:
Given--->
(1 + SinA ) ( 1 - SinA ) / ( 1 + CosA ) ( 1 - CosA )
To find ---> Value of given expression
Solution---> ATQ,
( 1 + SinA ) ( 1 - SinA ) / ( 1 + CosA ) ( 1 - CosA )
We have an identity,
a² - b² = ( a + b ) ( a - b ) , applying it here , we get,
= { ( 1 )² - ( SinA )² } / { ( 1 )² - ( CosA )² }
We know that , 1 - Sin²θ = Cos²θ and
1 - Cos²θ = sin²θ , using it we get,
= ( 1 - Sin²A ) / ( 1 - Cos²A )
= Cos²A / Sin²A
= Cot²A
Additional information--->
1 ) Sin²θ + Cos²θ = 1
2) 1 + tan²θ = sec²θ
3) 1 + Cot²θ = Cosec²θ
Answered by
0
cot^2A
#answerwithquality #bal
Similar questions