Math, asked by vikas12345691, 1 year ago

√1+sinA÷1-sinA + √1-sinA÷1+sinA=2 sec​

Answers

Answered by deepak3137
6

the answer is given above

Attachments:
Answered by jitumahi435
3

We have to prove that: \sqrt{\dfrac{1+\sin A}{1-\sin A} } +\sqrt{\dfrac{1-\sin A}{1+\sin A} } =2\sec A.

L.H.S. = \sqrt{\dfrac{1+\sin A}{1-\sin A} } +\sqrt{\dfrac{1-\sin A}{1+\sin A} }

Taking LCM of denominator part, we get

= \dfrac{(\sqrt{1+\sin A})^2+(\sqrt{1-\sin A})^2}{\sqrt{1-\sin A}\sqrt{1+\sin A} }

Using the algebraic identity:

(a + b)(a - b) = a^{2} - b^{2}

= \dfrac{1+\sin A+1-\sin A}{\sqrt{1^2-\sin^2 A} }

= \dfrac{2}{\sqrt{1-\sin^2 A} }

Using the trigonometric identity:

\cos^2 A=1-\sin^2 A

= \dfrac{2}{\sqrt{1-\sin^2 A} }

= \dfrac{2}{\sqrt{\cos^2 A} }

= \dfrac{2}{\cos A} }

= 2\sec A

= R.H.S., proved.

Thus, \sqrt{\dfrac{1+\sin A}{1-\sin A} } +\sqrt{\dfrac{1-\sin A}{1+\sin A} } =2\sec A, proved.

Similar questions