Math, asked by peawee10, 1 year ago

1+sina/1-sina = (sec+tana)^2​


KumarJayant: tomorrow
KumarJayant: send me
Anonymous: Mark my Ans as brainlist if it helps you!)

Answers

Answered by Anonymous
3

Answer \:  \\  \\ GIVEN \:  \: Question \:  \: Is \:  \:  \\  \frac{1 +  \sin(x) }{1 -  \sin(x) }  = ( \sec(x)  +  \tan(x) ) {}^{2}  \\  \\ rhs \\  \\ ( \sec(x)  +  \tan(x) ) {}^{2}  \\  \\ ( \frac{1}{ \cos(x) }  +  \frac{ \sin(x) }{ \cos(x) } ) {}^{2}  \\  \\  \frac{(1 +  \sin(x) ) {}^{2} }{ \cos {}^{2} (x) }  \\  \\  \frac{(1 +  \sin(x)) {}^{2}  }{1 {}^{2}  -  \sin {}^{2} (x) }  \\  \\ \:  \frac{(1 +  \sin(x))  \times (1 +  \sin(x) )}{(1 -  \sin(x)) \times (1 +  \sin(x) ) }  \\  \\  \frac{(1 +  \sin(x) )}{(1 +  \sin(x)) }  \times  \frac{(1 +  \sin(x) )}{(1 -  \sin(x)) }  \\  \\  \frac{1 +  \sin(x) }{1 -  \sin(x) }  \:  \:  \:  \:  \: hence \: proved \:  \\  \\ Note \:  \:  \\  \\ 1) \:  \:  \:  \:  \sec(x)  =  \frac{1}{ \cos(x) }  \\  \\ 2) \:  \:  \:  \tan(x)   =  \frac{ \sin(x) }{ \cos(x) }  \\  \\ 3) \:  \:  \:  \cos {}^{2} (x)  = 1 -  \sin {}^{2} (x)  \\  \\ 4) \:  \:  \: (1 -  \sin {}^{2} (x ) ) = (1 -  \sin(x) ) \times (1 +  \sin(x) )

Answered by Anonymous
0

Step-by-step explanation:

\begin{lgathered} \\ \frac{1 + \sin(x) }{1 - \sin(x) } = ( \sec(x) + \tan(x) ) {}^{2} \\ \\ RHS \\ \\ ( \sec(x) + \tan(x) ) {}^{2} \\ \\ ( \frac{1}{ \cos(x) } + \frac{ \sin(x) }{ \cos(x) } ) {}^{2} \\ \\ \frac{(1 + \sin(x) ) {}^{2} }{ \cos {}^{2} (x) } \\ \\ \frac{(1 + \sin(x)) {}^{2} }{1 {}^{2} - \sin {}^{2} (x) } \\ \\ \: \frac{(1 + \sin(x)) \times (1 + \sin(x) )}{(1 - \sin(x)) \times (1 + \sin(x) ) } \\ \\ \frac{(1 + \sin(x) )}{(1 + \sin(x)) } \times \frac{(1 + \sin(x) )}{(1 - \sin(x)) } \\ \\ \frac{1 + \sin(x) }{1 - \sin(x) } \: \: \: \: \: \\ \\Hence \: Proved \: \\ \\ \end{lgathered}

Similar questions