Math, asked by apal00280, 1 year ago

√1+sinA/1-sinA=secA+tanA​

Answers

Answered by Anonymous
4

To prove :

\sf  \star \:  \sqrt{ \frac{1 +  \sin( \theta) }{1  -  \sin( \theta)} } = \sec( \theta)  +  \tan( \theta)

Proof :

 \sf \hookrightarrow \sqrt{ \frac{1 +  \sin( \theta) }{1  -  \sin( \theta)} }  \\  \\  \sf \hookrightarrow \frac{ \sqrt{1 +  \sin( \theta)} }{ \sqrt{1  -  \sin( \theta) } }   \times  \frac{ \sqrt{1 +  \sin( \theta)} }{ \sqrt{1 +  \sin( \theta) } }  \\  \\  \sf \hookrightarrow \frac{ ({ \sqrt{(1 +  \sin( \theta)}  \: )}^{2} }{ \sqrt{ {(1)}^{2}   - { \sin }^{2}( \theta) } }  \\  \\  \sf \hookrightarrow \frac{1 +  \sin( \theta) }{ \sqrt{  {\cos}^{2} ( \theta)  } }  \\  \\ \sf \hookrightarrow  \frac{1 +  \sin( \theta) }{ \cos( \theta) }  \\  \\   \sf \hookrightarrow\frac{1}{ \cos( \theta) }  +  \frac{ \sin( \theta) }{ \cos( \theta) }  \\  \\  \sf \hookrightarrow \sec( \theta)  +  \tan( \theta)

Hence proved

Identities used :

 \sf \star \:  \:  \frac{1}{ \cos( \theta)  } </u><u>=  \sec( \theta)</u><u> \\  \\ \sf\star \:  \:  \frac{  \sin( \theta) }{ \cos( \theta) }  =  \tan( \theta)  \\  \\ \sf\star \:  \: 1 -  { \sin}^{2}(  \theta) =  { \cos}^{2}  (\theta)

Similar questions