Math, asked by devuravi1967, 11 months ago

(1-sinA)/(1+sinA)=(secA-tanA)^2​

Answers

Answered by 9384112619sv
1

Answer:

step by step correct explanation

Attachments:
Answered by Anonymous
8

HEY MATE YOUR ANSWER IS HERE....

TAKING L.H.S

 \frac{1 -  \sin(a) }{1 +  \sin(a) }

 =  \frac{1 -  \sin(a)  \times (1 -  \sin(a)) }{1 +  \sin(a) \times (1 -  \sin(a) ) }

 \frac{1 +  { \sin }^{2}a  \:  - 2 \sin(a)  }{1 -  { \sin }^{2}a }

 \frac{1}{ {  \cos }^{2}a }  +  \frac{ { \sin }^{2}a }{ { \cos }^{2}a } -   \frac{2 \sin(a) }{ { \cos }^{2}a }

 { \sec }^{2} a +  \ { \tan }^{2} a - 2( \frac{ \sin(a) }{ \cos(a) \:    }  \times \frac{1}{ \cos(a) })

 { \sec }^{2} a +  { \tan}^{2} a \:  - 2 \tan(a)  \sec(a)

  ({ \sec \: a \:  -  \tan \: a  })^{2}

HENCE PROVED

THANKS FOR YOUR QUESTION HOPE IT HELPS

KEEP SMILING ☺️☺️☺️☺️☺️☺️☺️

Similar questions