Math, asked by xkrish52, 6 hours ago

√1+sinA/√1-sinA=secA+tanA prove thate​

Answers

Answered by TheHelper01
1

 \sqrt{ \frac{1 +  \sin \: A}{1 -  \sin \: A} }  =  \sec \: A +  \tan \: A

 \sqrt{ \frac{1 +   \: \sin \: A }{1 -  \sin \: A} }

Rationalisation of denominator

 =  \sqrt{ \frac{1 +  \sin \: A }{1 -  \sin \: A} \times  \frac{1 +  \sin \: A }{1  +  \sin \: A}  }

 =  \sqrt{ \frac{(1  +  \sin \: A) {}^{2}  }{1 {}^{2}  -  \sin {}^{2}A } }

 =   \sqrt{ \frac{(1 +  \sin \: A) {}^{2} }{1 -  \sin {}^{2}A} }

 =   \sqrt{ \frac{(1 +  \sin \: A) {}^{2} }{ \cos {}^{2}A   } }

 =     \sqrt{( \frac{1  +  \sin \: A }{ \cos \: A} ) {}^{2} }

 =  \frac{1  +   \sin \: A }{ \cos \: A}

 =  \frac{1}{ \cos \: A }  +  \frac{ \sin \: A }{ \cos \: A }

 =  \sec \: A +  \tan \: A

Hence proved.

Be Brainly!

Similar questions