Math, asked by Streambehera, 5 months ago

√1+sinA/1-sinA=tan (π/4 + A/2)​

Answers

Answered by BrainlyPopularman
20

TO PROVE :

 \\ \implies \bf  \sqrt{ \dfrac{1 +  \sin(A) }{1 -  \sin(A)}} =  \tan \left(\dfrac{\pi}{4} + \dfrac{A}{2} \right)  \\

SOLUTION :

• Let's take L.H.S. –

 \\ \:  \:  =  \:  \: \bf  \sqrt{ \dfrac{1 +  \sin(A) }{1 -  \sin(A)}}\\

• Now rationalization –

 \\ \:  \:  =  \:  \: \bf  \sqrt{ \dfrac{1 +  \sin(A) }{1 -  \sin(A)} \times \dfrac{1 +  \sin(A) }{1 + \sin(A)}}\\

 \\ \:  \:  =  \:  \: \bf  \sqrt{ \dfrac{ \{1 +  \sin(A) \}\{1 +  \sin(A) \}}{ \{1 -  \sin(A) \}\{1 + \sin(A) \}}}\\

 \\ \:  \:  =  \:  \: \bf  \sqrt{ \dfrac{ \{1 +  \sin(A) \}^{2}}{ \{1 -  \sin^{2} (A) \}}}\\

 \\ \:  \:  =  \:  \: \bf  \sqrt{ \dfrac{ \{1 +  \sin(A) \}^{2}}{\cos^{2} (A)}}\\

 \\ \:  \:  =  \:  \: \bf\dfrac{1 +  \sin(A)}{\cos(A)}\\

• We should write this as –

 \\ \:  \:  =  \:  \: \bf\dfrac{1 +  \sin(\pi/2 - A)}{\cos(\pi/2 - A)}\\

 \\ \:  \:  =  \:  \: \bf\dfrac{1 +  \cos(\pi/2 - A)}{\sin(\pi/2 - A)}\\

 \\ \:  \:  =  \:  \: \bf\dfrac{2 \cos ^{2} (\pi/4 - A/2)}{2\sin(\pi/4 - A/2)\cos(\pi/4 - A/2)}\\

 \\ \:  \:  =  \:  \: \bf\dfrac{ \cos (\pi/4 - A/2)}{\sin(\pi/4 - A/2)}\\

 \\ \:  \:  =  \:  \: \bf \cot (\pi/4 - A/2)\\

 \\ \:  \:  =  \:  \: \bf \tan(\pi/2 -  \{\pi/4 - A/2 \})\\

 \\ \:  \:  =  \:  \: \bf \tan(\pi/2 -\pi/4  + A/2)\\

 \\ \:  \:  =  \:  \: \bf \tan \{(2\pi–\pi)/4  + A/2 \}\\

 \\ \:  \:  =  \:  \: \bf \tan \left(\dfrac{\pi}{4} + \dfrac{A}{2} \right)\\

 \\ \:  \:  =  \:  \: \bf R.H.S.\\

 \\ \implies \red{\underbrace{\bf Hence \:  \: Proved}}\\

Similar questions