1+sinA÷cosA=1+sin A+cosA÷1-cosA-sinA
Answers
Answer:
PROOF:
Taking L.H.S.
\rm{\dashrightarrow \dfrac{(1-sinA)}{cosA} }⇢
cosA
(1−sinA)
Rationalising the denominator
\rm{\dashrightarrow \dfrac{(1-sinA)cos A}{cosA \times cos A} }⇢
cosA×cosA
(1−sinA)cosA
\rm{\dashrightarrow \dfrac{(1-sinA)cos A}{cos^2 A} }⇢
cos
2
A
(1−sinA)cosA
Using Identity:-
sin²A + cos²A = 1
cos²A = 1 – sin²A
\rm{\dashrightarrow \dfrac{(1-sinA)cos A}{1-sin^2 A} }⇢
1−sin
2
A
(1−sinA)cosA
Using Identity:
a² – b² = (a + b)(a – b)
\rm{\dashrightarrow \dfrac{(1-sinA)cos A}{(1+sin A)(1-sin A)} }⇢
(1+sinA)(1−sinA)
(1−sinA)cosA
\rm{\dashrightarrow \dfrac{\cancel{(1-sinA)}cos A}{(1+sin A)\cancel{(1-sin A)}} }⇢
(1+sinA)
(1−sinA)
(1−sinA)
cosA
\bf{\dashrightarrow \dfrac{cos A}{1 + sin A} = R.H.S. }⇢
1+sinA
cosA
=R.H.S.
\bf{\underline{\underline{ Hence \: proved}}}
Henceproved