Math, asked by shivanshchauhan51, 1 year ago

1+sinA-cosA/1+sinA+cosA=√1-cosA/1+cosA​

Answers

Answered by pkparmeetkaur
22

Step-by-step explanation:

⭐LHS = [(1+sinA-cosA )/(1+sinA+cosA)]²

=[ (1+sin²A+cos²A+2sinA-2sinAcosA-2cosA)/(1+sin²A+cos²A+2sinA+2sinAcosA+2cosA) ]²

= [( 1+1+2sinA-2sinAcosA-2cosA)/(1+1+2sinA+2sinAcosA+2cosA)]²

= { ( 2(1+sinA) -2cosA(sinA+1) / [ 2(1+sinA) + 2cosA(sinA +1 ) ]}²

= { (2(1+sinA)[1 - cosA] /[2(1+sinA )(1 + cosA )] }²

= [ ( 1 - cosA ) / ( 1 + cosA ) ]²

⭐= RHS

#Regards♥️


shivanshchauhan51: solve it from rhs
pkparmeetkaur: keep the right side same
pkparmeetkaur: I have proved left hand side = right hand side
pkparmeetkaur: see properly
shivanshchauhan51: ok
shivanshchauhan51: thnks
pkparmeetkaur: :)
Answered by TanikaWaddle
22

Given : \frac{1+\sin\theta-\cos \theta}{1+\sin\theta+\cos \theta}= \sqrt{\frac{1-\cos\theta}{1+\cos\theta}}

Step-by-step explanation:

\frac{1+\sin\theta-\cos \theta}{1+\sin\theta+\cos \theta}= \sqrt{\frac{1-\cos\theta}{1+\cos\theta}}\\\\\text{squaring both sides }\\\\(\frac{1+\sin\theta-\cos \theta}{1+\sin\theta+\cos \theta})^2=\frac{1-\cos\theta}{1+\cos\theta}\\\\\text{solving LHS by using identity} \\\\(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca\\\\(\frac{1+\sin\theta-\cos \theta}{1+\sin\theta+\cos \theta})^2

\\\\\frac{1+1+2\sin\theta-2\sin\theta\cos\theta-2\cos\theta}{1+1+2\sin\theta+2\sin\theta\cos\theta+2\cos\theta}\\\\\frac{2(1+\sin\theta)-2\cos\theta(1+\sin\theta)}{2(1+\sin\theta)+2\cos\theta(1+\sin\theta)}\\\\\frac{(1+\sin\theta)(2-2\cos\theta)}{(1+\sin\theta)(2+2\cos\theta)}\\\\\frac{2(1-\cos\theta)}{2(1+\cos\theta)}\\\\\frac{(1-\cos\theta)}{(1+\cos\theta)}

hence proved

#Learn more :

https://brainly.in/question/11001463

Similar questions