(1+sina-cosa/1+sina+cosa)^2=1-cosa/1+cosa
Answers
Answered by
0
Answer:
you have to evaluate left side lhs
Step-by-step explanation:
i have proved it i think you will fet the attachment . i hope it helps u
Answered by
0
lLHS = (1+sina-cosa/1+sinA+CosA)^2
= (1+sin^2a +cos^2a+2sina-2cosa-2sinacosa/1+sin^a+cos^2a+2sina+2cosa+2sinacosa)
= (1+1+2sina-2cosa-2sinacosa/ 1+1+2sina+2cosa+2sinacosa)
=taking 2 common and cancelling
=(1+sina-cosa-sinacosa/ 1+sinA+CosA+sina-cosa)
={(1+sinA)-cosa(1+sinA)}/{(1+sinA)+CosA(1+sinA)}
= (1+sinA)*(1-cosa)/(1+sinA)*(1+CosA)
= (1-cosa)/(1+CosA) = RHS proved
Similar questions