Math, asked by vanshika2556, 7 months ago

(1+sina-cosa/1+sina+cosa)^2=1-cosa/1+cosa​

Answers

Answered by divu538
0

Answer:

you have to evaluate left side lhs

Step-by-step explanation:

i have proved it i think you will fet the attachment . i hope it helps u

Answered by amitsnh
0

lLHS = (1+sina-cosa/1+sinA+CosA)^2

= (1+sin^2a +cos^2a+2sina-2cosa-2sinacosa/1+sin^a+cos^2a+2sina+2cosa+2sinacosa)

= (1+1+2sina-2cosa-2sinacosa/ 1+1+2sina+2cosa+2sinacosa)

=taking 2 common and cancelling

=(1+sina-cosa-sinacosa/ 1+sinA+CosA+sina-cosa)

={(1+sinA)-cosa(1+sinA)}/{(1+sinA)+CosA(1+sinA)}

= (1+sinA)*(1-cosa)/(1+sinA)*(1+CosA)

= (1-cosa)/(1+CosA) = RHS proved

Similar questions