(1+sinA-cosA/1+sinA+cosA)^2=1-cosA/1+cosA
Answers
Answer:
Hi ,
LHS = [(1+sinA-cosA )/(1+sinA+cosA)]²
=[ (1+sin²A+cos²A+2sinA-2sinAcosA-2cosA)/(1+sin²A+cos²A+2sinA+2sinAcosA+2cosA) ]²
= [( 1+1+2sinA-2sinAcosA-2cosA)/(1+1+2sinA+2sinAcosA+2cosA)]²
= { ( 2(1+sinA) -2cosA(sinA+1) / [ 2(1+sinA) + 2cosA(sinA +1 ) ]}²
= { (2(1+sinA)[1 - cosA] /[2(1+sinA )(1 + cosA )] }²
= [ ( 1 - cosA ) / ( 1 + cosA ) ]²
= RHS
I hope this helps you.
:)
Smenevacuundacy and 304 more users found this answer helpful
THANKS
176
3.8
(129 votes)
Log in to add comment
Answer
4.5/5
136
rajindersingh3pcmzfe
Helping Hand
1 answer
9 people helped
hi,
LHS
=
[(1+ sinA - cosA) /
(1+ sinA + cosA)]²
according to identity ,
(a+b-c)² = a²+b²+c²+2ab-2bc-2ac
=( 1 + sin²A + cos²A + 2sinA - 2sinA.cosA - 2cosA ) /
( 1 + sin²A + cos²A + 2sinA + 2sinA.cosA + 2cosA)
=( 1 + 1 + 2sinA - 2cosA - 2sinA.cosA ) /
( 1 + 1 + 2sinA + 2cosA + 2sinA.cosA)
=( 2 + 2sinA - 2cosA - 2sinA.cosA ) /
( 2 + 2sinA + 2cosA + 2sinA.cosA)
=2( 1 + sinA - cosA - sinA.cosA ) /
2( 1 + sinA + cosA + sinA.cosA)
=( 1 + sinA - cosA - sinA.cosA ) /
( 1 + sinA + cosA + sinA.cosA)
=[ 1(1 + sinA) -cosA(1 + sinA) ] /
[ 1(1 + sinA) +cosA(1 + sinA)]
=[ (1 - cosA)(1 + sinA) ] /
[ (1 + cosA)(1 + sinA)]
=( 1 - cosA ) / = RHS ,hence proved
( 1 + cosA)