Math, asked by vamshi49, 1 year ago

(1+sinA-cosA/1+sinA+cosA)^2=1-cosA/1+cosA

Answers

Answered by Anonymous
18
LHS = [(1+sinA-cosA )/(1+sinA+cosA)]²

=[ (1+sin²A+cos²A+2sinA-2sinAcosA-2cosA)/(1+sin²A+cos²A+2sinA+2sinAcosA+2cosA) ]²

= [( 1+1+2sinA-2sinAcosA-2cosA)/(1+1+2sinA+2sinAcosA+2cosA)]²

= { ( 2(1+sinA) -2cosA(sinA+1) / [ 2(1+sinA) + 2cosA(sinA +1 ) ]}²

= { (2(1+sinA)[1 - cosA] /[2(1+sinA )(1 + cosA )] }²

= [ ( 1 - cosA ) / ( 1 + cosA ) ]

= RHS

Answered by manuniyas
1

Answer:

Step-by-step explanation:

LHS = [(1+sinA-cosA )/(1+sinA+cosA)]²

=[ (1+sin²A+cos²A+2sinA-2sinAcosA-2cosA)/(1+sin²A+cos²A+2sinA+2sinAcosA+2cosA) ]²

= [( 1+1+2sinA-2sinAcosA-2cosA)/(1+1+2sinA+2sinAcosA+2cosA)]²

= { ( 2(1+sinA) -2cosA(sinA+1) / [ 2(1+sinA) + 2cosA(sinA +1 ) ]}²

= { (2(1+sinA)[1 - cosA] /[2(1+sinA )(1 + cosA )] }²

= [ ( 1 - cosA ) / ( 1 + cosA ) ]

= RHS

Similar questions