(1-sinA+cosA)(1-sinA+cosA)=2(1+cosA)(1-sinA)
Answers
Answered by
92
(1-sinA+cosA)(1-sinA+cosA)=2(1+cosA)(1-sinA)
We take LHS part,
MissGulabo:
❤️ Just Fabulous ❤️
Answered by
49
step-by-step explanation:
Given,
L.H.S = (1-sinA+cosA)(1-sinA+cosA)
=
after arrangement of terms,
we get,
=
now,
we know that,
= + 2ab +
so,
here,
a = (1-sinA)
b = cosA
putting these values in the identity,
we get,
= + 2(1-sinA)(cosA) +
= { - 2(1)(sinA) + } + 2(cosA)(1- sinA) +
= 1 - 2sinA + A + 2(1-sinA)(cosA) + A
But,
we know that,
A + A = 1
so putting this value,
we get,
= 1+ 1 + 2(1- sinA)(cosA) - 2 sinA
= 2+ 2(1- sinA) (cos A) - 2sinA
taking 2 as common from all terms,
we get,
= 2[ 1+ (1-sinA)(cosA) - sinA]
= 2[ ( 1-sinA) + (1-sinA)(cosA) ]
Now,
taking (1-sinA) as common term,
we get,
= 2(1-sinA)(1+cosA)
= 2( 1+cosA)(1- sinA)
= R.H.S
since,
L.H.S = R.H.S
hence,
proved..
Similar questions