Math, asked by anan420, 1 year ago

(1-sinA+cosA)(1-sinA+cosA)=2(1+cosA)(1-sinA)​

Answers

Answered by Anonymous
92

\boxed{\begin{minipage}{7 cm}Fundamental Trigonometric Identities \\ \\$\sin^2\theta + \cos^2\theta=1 \\ \\1+\tan^2\theta = \sec^2\theta \\ \\1+\cot^2\theta = \text{cosec}^2 \, \theta$\end{minipage}}

 \mathfrak{Question:-}

(1-sinA+cosA)(1-sinA+cosA)=2(1+cosA)(1-sinA)​

 \mathfrak{Solution:-}

We take LHS part,

\bold{=(1-sinA+cosA)(1-sinA+cosA)}

\bold{=(1 - sinA+cosA)^{2}}

\bold{=[(1-sinA)+(cosA)]^{2}}

\bold{= (1-sinA)^{2} + Cos^{2}A + 2(1-sinA)(cosA)}

\bold{=1-sin^{2}A-2sinA+1-sin^{2}A+2cosA-2sinAcosA}

\bold{=2-2sinA+2cosA-2sinAcosA}

\bold{=2(1-sinA)+2cosA(1-sinA)}

\bold{=(2+2cosA)(1-sinA)}

\bold{=2(1+cosA)(1-sinA)}

\bold{Henced\; Proved}


MissGulabo: ❤️ Just Fabulous ❤️
Anonymous: Thanks❤️
MissGulabo: Welcome ❤️
Answered by Anonymous
49

\huge\bf\pink{\mid{\overline{\underline{Your\: Answer}}}\mid}

step-by-step explanation:

Given,

L.H.S = (1-sinA+cosA)(1-sinA+cosA)

= {(1-sinA+cosA)}^{2}

after arrangement of terms,

we get,

= {[(1-sinA)+(cosA)]}^{2}

now,

we know that,

{(a+b)}^{2} = {a}^{2}+ 2ab + {b}^{2}

so,

here,

a = (1-sinA)

b = cosA

putting these values in the identity,

we get,

= {(1-sinA)}^{2}+ 2(1-sinA)(cosA) + {(cosA)}^{2}

= { {1}^{2} - 2(1)(sinA) +{(sinA)}^{2} } + 2(cosA)(1- sinA) + {(cosA)}^{2}

= 1 - 2sinA + {sin}^{2}A + 2(1-sinA)(cosA) + {cos}^{2}A

But,

we know that,

{sin}^{2}A + {cos}^{2}A = 1

so putting this value,

we get,

= 1+ 1 + 2(1- sinA)(cosA) - 2 sinA

= 2+ 2(1- sinA) (cos A) - 2sinA

taking 2 as common from all terms,

we get,

= 2[ 1+ (1-sinA)(cosA) - sinA]

= 2[ ( 1-sinA) + (1-sinA)(cosA) ]

Now,

taking (1-sinA) as common term,

we get,

= 2(1-sinA)(1+cosA)

= 2( 1+cosA)(1- sinA)

= R.H.S

since,

L.H.S = R.H.S

hence,

proved..


Swarup1998: No more comments to be added here after with the determination to chat. Comment box is to be used for the purpose of queries. Be wised and help making Brainly a better place. Thank you. -BrainlyModerator
Anonymous: Gr8 masterpiece of resourceful answer...❤
Similar questions