Math, asked by amitparija05, 8 months ago

1+sinA-cosA/1+sinA+cosA = tan A/2​

Answers

Answered by minhail
0

Answer and Explanation:

To prove : \frac{1+\sin A-\cos A}{1+\sin A+\cos A}=\tan (\frac{A}{2})

1+sinA+cosA

1+sinA−cosA

=tan(

2

A

)

Proof :

Taking LHS,

LHS=\frac{1+\sin A-\cos A}{1+\sin A+\cos A}LHS=

1+sinA+cosA

1+sinA−cosA

Using the trigonometry identities we can write,

1) \sin A=2\sin (\frac{A}{2})\cos (\frac{A}{2})sinA=2sin(

2

A

)cos(

2

A

)

2) \cos A=2\cos^2(\frac{A}{2})-1cosA=2cos

2

(

2

A

)−1

3) \cos A=1-2\sin^2(\frac{A}{2})cosA=1−2sin

2

(

2

A

)

Applying these identities,

LHS=\frac{1+2\sin (\frac{A}{2})\cos (\frac{A}{2})-1+2\sin^2(\frac{A}{2})}{1+2\sin (\frac{A}{2})\cos (\frac{A}{2})+2\cos^2(\frac{A}{2})-1}LHS=

1+2sin(

2

A

)cos(

2

A

)+2cos

2

(

2

A

)−1

1+2sin(

2

A

)cos(

2

A

)−1+2sin

2

(

2

A

)

LHS=\frac{2\sin (\frac{A}{2})\cos (\frac{A}{2})+2\sin^2(\frac{A}{2})}{2\sin (\frac{A}{2})\cos (\frac{A}{2})+2\cos^2(\frac{A}{2})}LHS=

2sin(

2

A

)cos(

2

A

)+2cos

2

(

2

A

)

2sin(

2

A

)cos(

2

A

)+2sin

2

(

2

A

)

LHS=\frac{2\sin (\frac{A}{2})(\cos (\frac{A}{2})+\sin(\frac{A}{2}))}{2\cos (\frac{A}{2})(\sin (\frac{A}{2})+\cos(\frac{A}{2}))}LHS=

2cos(

2

A

)(sin(

2

A

)+cos(

2

A

))

2sin(

2

A

)(cos(

2

A

)+sin(

2

A

))

Cancel the like term,

LHS=\frac{\sin (\frac{A}{2})}{\cos (\frac{A}{2})}LHS=

cos(

2

A

)

sin(

2

A

)

LHS=\tan \frac{A}{2}LHS=tan

2

A

LHS=RHSLHS=RHS

Hence proved.

Answered by saran004newton
0

Answer:

sorry bro I don't know the answer but I try to give me best for you in another sum

Similar questions