(1-sinA+cosA) ^ = 2(1+cosA)( 1-sinA)
Answers
Answered by
0
answer is 1 cos+1sinA
tanmoyvestige:
WHERE IS THE PROOF
Answered by
1
Answer:
LHS: (1-sinA+cosA)2 = [(1-sinA) + cosA]2
= (1-sinA)2 + cos2A + 2(1-sinA)cosA
= 1 + sin2A − 2sinA + cos2A + 2(1-sinA)cosA
= 1 + (sin2A + cos2A) − 2sinA + 2(1-sinA)cosA
= 1 + 1 − 2sinA + 2(1-sinA)cosA [Since, sin2A + cos2A =1]
= 2 − 2sinA + 2(1-sinA)cosA
= 2(1 − sinA) + 2(1-sinA)cosA
= 2(1 − sinA)(1 + cosA)
= RHS
HENCE PROVED
Similar questions