Math, asked by dangerousgirl444, 1 year ago

(1-SinA-CosA)^2=2(1-SinA)(1-CosA)​

Answers

Answered by Anonymous
3

\boxed{\huge{Question:-}}

(1-SinA-CosA)² = 2(1-SinA)(1-CosA)

\boxed{\huge{Proof:-}}

\mathfrak{\huge{\underline {L.H.S.}}}

⏩(1-sinA+cosA)²= 2(1-sinA) (1-cosA)

.........................

➡ (1-sinA+cosA)²= [(1-sinA) + cosA]

 ➡ (1-sinA)² + cos²A + 2(1-sinA)cosA 

➡  1 + sin²A − 2sinA + cos²A + 2(1-sinA)cosA

 ➡ 1 + (sin²A + cos²A) − 2sinA + 2(1-sinA)cosA  

➡  1 + 1 − 2sinA + 2(1-sinA)cosA    [Since, sin²A + cos²A =1] 

➡ 2 − 2sinA + 2(1-sinA)cosA 

➡ 2(1 − sinA) + 2(1-sinA)cosA

 ➡  2(1 − sinA)(1 + cosA)

It is equal to R. H. S.

\boxed{\mathfrak{\Huge{\red{Hence,Proved.}}}}

Answered by Anonymous
6

To Prove

(1-sinA-cosA)² = 2(1-sinA)(1-cosA)

Proof

LHS

\mathsf{= {[(1-sinA)-cosA]}^{2}}

\boxed{{(a-b)}^{2}={a}^{2}-2ab+{b}^{2}}

\mathsf{</strong><strong>=</strong><strong> </strong>{(1-sinA)}^{2} +{cos}^{2}A -2(1-sinA)(cosA)}

\boxed{{(a-b)}^{2}={a}^{2}-2ab+{b}^{2}}

\mathsf{= 1+{sin}^{2}A-2sinA+{cos}^{2}A -2(1-sinA)(cosA)}

\mathsf{= 1+{sin}^{2}A+{cos}^{2}A-2sinA-2(1-sinA)(cosA)}

\boxed{{sin}^{2}A+{cos}^{2}A = 1}

\mathsf{= 1+1-2sinA-2(1-sinA)(cosA)}

\mathsf{= 2-2sinA-2(1-sinA)(cosA)}

\mathsf{ = 2(1-sinA) -2(1-sinA)(cosA)}

\mathsf{= 2(1-sinA)(1-cosA)}

RHS

\mathsf{2(1-sinA)(1-cosA)}

Here

LHS = RHS

Hence proved!

Similar questions