(1-SinA-CosA)^2=2(1-SinA)(1-CosA)
Answers
Answered by
3
(1-SinA-CosA)² = 2(1-SinA)(1-CosA)
⏩(1-sinA+cosA)²= 2(1-sinA) (1-cosA)
.........................
➡ (1-sinA+cosA)²= [(1-sinA) + cosA]
➡ (1-sinA)² + cos²A + 2(1-sinA)cosA
➡ 1 + sin²A − 2sinA + cos²A + 2(1-sinA)cosA
➡ 1 + (sin²A + cos²A) − 2sinA + 2(1-sinA)cosA
➡ 1 + 1 − 2sinA + 2(1-sinA)cosA [Since, sin²A + cos²A =1]
➡ 2 − 2sinA + 2(1-sinA)cosA
➡ 2(1 − sinA) + 2(1-sinA)cosA
➡ 2(1 − sinA)(1 + cosA)
It is equal to R. H. S.
Answered by
6
To Prove
(1-sinA-cosA)² = 2(1-sinA)(1-cosA)
Proof
LHS
RHS
Here
LHS = RHS
Hence proved!
Similar questions