(1+sinA+cosA)2=2(1+sinA)(1+cosA)
Answers
Answered by
2
Answer:
Step-by-step explanation:
Consider the LHS:
(1 + sinA + cosA)²
= [(1 + sinA) + cosA]²
= (1 + sinA)² + cos2A + 2(1 + sinA)cosA
= 1 + sin2A + 2sinA + cos2A + 2(1 + sinA)cosA
= 1 + (sin2A + cos2A) − 2sinA + 2(1 + sinA)cosA
= 1 + 1 + 2sinA + 2(1 + sinA)cosA [Since, sin2A + cos2A = 1]
= 2 + 2sinA + 2(1 + sinA)cosA
= 2(1 + sinA) + 2(1 + sinA)cosA
= 2(1 + sinA)(1 + cosA) = RHS
Hence Proved !!!!
Similar questions