1 + SinA - cosA / cosA- 1 + sinA = 1 - cosA / sinA.
Chapter trigonometry ratio..
Don't irrevalant answer⌫.plzzzz correct answer✔︎.. Fast...
Answers
Correct Question :
Answer :
To Prove :
Proof :
LHS =
⠀ ⠀ ⠀⠀ ⠀
By dividing Numerator and Denominator by SinA :
⠀ ⠀ ⠀⠀ ⠀
We know that :
⠀ ⠀ ⠀⠀ ⠀
Now, we know that :
⠀ ⠀ ⠀⠀ ⠀
By using identinty :
- a² - b² = (a + b)(a - b)
⠀ ⠀ ⠀⠀ ⠀
Now, by taking cosecA - cotA common from numerator :
⠀ ⠀ ⠀⠀ ⠀
Now, we know that :
⠀ ⠀ ⠀⠀ ⠀
RHS =
⠀ ⠀
As, LHS = RHS,
Hence, proved.
Answer:
Correct Question :
\sf \dfrac{1 + sin A - cos A}{cos A + 1 + sin A} = \dfrac{1 - cos A}{sin A}
cosA+1+sinA
1+sinA−cosA
=
sinA
1−cosA
Answer :
To Prove :
\sf \dfrac{1 + sin A - cos A}{cos A + 1 + sin A} = \dfrac{1 - cos A}{sin A}
cosA+1+sinA
1+sinA−cosA
=
sinA
1−cosA
Proof :
LHS = \sf \dfrac{1 + sin A - cos A}{cos A + 1 + sin A}
cosA+1+sinA
1+sinA−cosA
⠀ ⠀ ⠀⠀ ⠀
By dividing Numerator and Denominator by SinA :
\sf : \implies \underline{\underline{\bf LHS}} = \dfrac{\dfrac{1 + sin A - cos A}{sinA}}{\dfrac{cos A + 1 + sin A}{sinA}}:⟹
LHS
=
sinA
cosA+1+sinA
sinA
1+sinA−cosA
\sf : \implies \underline{\underline{\bf LHS}} = \dfrac{\dfrac{1}{sinA} + \dfrac{sin A}{sinA} - \dfrac{cos A}{sinA}}{\dfrac{cos A}{sinA} + \dfrac{1}{sinA} + \dfrac{sin A}{sinA}}:⟹
LHS
=
sinA
cosA
+
sinA
1
+
sinA
sinA
sinA
1
+
sinA
sinA
−
sinA
cosA
\sf : \implies \underline{\underline{\bf LHS}} = \dfrac{\dfrac{1}{sinA} + \cancel{\dfrac{sin A}{sinA}} - \dfrac{cos A}{sinA}}{\dfrac{cos A}{sinA} + \dfrac{1}{sinA} + \cancel{\dfrac{sin A}{sinA}}}:⟹
LHS
=
sinA
cosA
+
sinA
1
+
sinA
sinA
sinA
1
+
sinA
sinA
−
sinA
cosA
\sf : \implies \underline{\underline{\bf LHS}} = \dfrac{\dfrac{1}{sinA} + 1 - \dfrac{cos A}{sinA}}{\dfrac{cos A}{sinA} + \dfrac{1}{sinA} + 1}:⟹
LHS
=
sinA
cosA
+
sinA
1
+1
sinA
1
+1−
sinA
cosA
⠀ ⠀ ⠀⠀ ⠀
We know that :
\large \underline{\boxed{\bf{\dfrac{1}{sin \theta} = cosec \theta }}}
sinθ
1
=cosecθ
\large \underline{\boxed{\bf{\dfrac{cos \theta}{sin \theta} = cot \theta }}}
sinθ
cosθ
=cotθ
\sf : \implies \underline{\underline{\bf LHS}} = \dfrac{\pink{cosecA} + 1 - \pink{cotA}}{\pink{cotA} + \pink{cosecA} + 1}:⟹
LHS
=
cotA+cosecA+1
cosecA+1−cotA
⠀ ⠀ ⠀⠀ ⠀
Now, we know that :
\large \underline{\boxed{\bf{1 = cosec^{2} \theta - cot^{2} \theta }}}
1=cosec
2
θ−cot
2
θ
\sf : \implies \underline{\underline{\bf LHS}} = \dfrac{cosecA + \pink{(cosec^{2} A - cot ^{2}A)} - cotA}{cotA + cosecA + 1}:⟹
LHS
=
cotA+cosecA+1
cosecA+(cosec
2
A−cot
2
A)−cotA
\sf : \implies \underline{\underline{\bf LHS}} = \dfrac{cosecA - cotA + (cosec^{2} A - cot ^{2}A)}{cotA + cosecA + 1}:⟹
LHS
=
cotA+cosecA+1
cosecA−cotA+(cosec
2
A−cot
2
A)
⠀ ⠀ ⠀⠀ ⠀
By using identinty :
a² - b² = (a + b)(a - b)
\sf : \implies \underline{\underline{\bf LHS}} = \dfrac{cosecA - cotA + \pink{(cosec A + cotA)(cosec A - cotA)}}{cotA + cosecA + 1}:⟹
LHS
=
cotA+cosecA+1
cosecA−cotA+(cosecA+cotA)(cosecA−cotA)
⠀ ⠀ ⠀⠀ ⠀
Now, by taking cosecA - cotA common from numerator :
\sf : \implies \underline{\underline{\bf LHS}} = \dfrac{\pink{(cosecA - cotA)} ( 1 + (cosec A + cotA)}{cotA + cosecA + 1}:⟹
LHS
=
cotA+cosecA+1
(cosecA−cotA)(1+(cosecA+cotA)
\sf : \implies \underline{\underline{\bf LHS}} = \dfrac{(cosecA - cotA) ( 1 + cosec A + cotA)}{(1 + cosec A + cotA)}:⟹
LHS
=
(1+cosecA+cotA)
(cosecA−cotA)(1+cosecA+cotA)
\sf : \implies \underline{\underline{\bf LHS}} = \dfrac{(cosecA - cotA) \cancel{( 1 + cosec A + cotA)}}{\cancel{(1 + cosec A + cotA)}}:⟹
LHS
=
(1+cosecA+cotA)
(cosecA−cotA)
(1+cosecA+cotA)
\sf : \implies \underline{\underline{\bf LHS}} = cosecA - cotA:⟹
LHS
=cosecA−cotA
⠀ ⠀ ⠀⠀ ⠀
Now, we know that :
\large \underline{\boxed{\bf{cosec \theta = \dfrac{1}{sin \theta} }}}
cosecθ=
sinθ
1
\large \underline{\boxed{\bf{cot \theta = \dfrac{cos \theta}{sin \theta} }}}
cotθ=
sinθ
cosθ
\sf : \implies \underline{\underline{\bf LHS}} = \dfrac{1}{sin A} - \dfrac{cos A}{sin A}:⟹
LHS
=
sinA
1
−
sinA
cosA
\sf : \implies \underline{\underline{\bf LHS}} = \dfrac{1 - cos A}{sin A}:⟹
LHS
=
sinA
1−cosA
⠀ ⠀ ⠀⠀ ⠀
RHS = \sf \dfrac{1 - cos A}{sin A}
sinA
1−cosA
⠀ ⠀
As, LHS = RHS,
Hence, proved.
Step-by-step explanation:
is khushikumari99 your I'd?
pl answer me