-1+sinAsin(90-A)/cot(90-A)=-sin^2A
Answers
Answered by
2
i hope this helps i guess this is the only way
Attachments:
Answered by
0
-1+[sinA·sin(90-A)/cot(90-A)]= -sin^2A
LHS
-1+[sinA·sin(90-A)/cot(90-A)]
-1+[sinA·cosA/tanA] {complementary angles}
-1+[(sinA·cosA)/(sinA/cosA)] {tanA=ainA/cosA}
-1+[(sinA·cosA) X (cosA/sinA)] {sinA will get canceled}
-1+[cosA X cosA]
-1+cos^2A {taking negative outside}
-[1-cos^2A] {1-cos^2A=sin^2A}
-[sin^2A]
-sin^2A
Therefore LHS=RHS
So -1+[sinA·sin(90-A)/cot(90-A)]= -sin^2A
LHS
-1+[sinA·sin(90-A)/cot(90-A)]
-1+[sinA·cosA/tanA] {complementary angles}
-1+[(sinA·cosA)/(sinA/cosA)] {tanA=ainA/cosA}
-1+[(sinA·cosA) X (cosA/sinA)] {sinA will get canceled}
-1+[cosA X cosA]
-1+cos^2A {taking negative outside}
-[1-cos^2A] {1-cos^2A=sin^2A}
-[sin^2A]
-sin^2A
Therefore LHS=RHS
So -1+[sinA·sin(90-A)/cot(90-A)]= -sin^2A
Similar questions