Math, asked by rohit8676kr, 10 hours ago

(1 + sino + cos0)2 = 2(1 + sino) (1 + coso)

Answers

Answered by mathdude500
3

Given Question :-

Prove that

 \sf \:  {(1 + sin\theta + cos\theta)}^{2}  = 2(1 + sin\theta)(1 + cos\theta)

 \green{\large\underline{\sf{Solution-}}}

Consider LHS

\rm :\longmapsto\: {(1 + sin\theta + cos\theta)}^{2}

can be rewritten as

\rm \:  =  \:  {\bigg[(1 + sin\theta) + cos\theta\bigg]}^{2}

We know,

\red{\rm :\longmapsto\:\boxed{\tt{  {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy \: }}}

So, using this, we get

\rm \:  =  \:  {(1 + sin\theta)}^{2}  +  {cos}^{2}\theta + 2cos\theta(1 + sin\theta)

\rm \:  =  \:1 +  {sin}^{2}\theta + 2sin\theta   +  {cos}^{2}\theta + 2cos\theta(1 + sin\theta)

can be re-arranged as

\rm \:  =  \:1 +({sin}^{2}\theta +  {cos}^{2}\theta) + 2sin\theta + 2cos\theta(1 + sin\theta)

\rm \:  =  \:1 +1 + 2sin\theta + 2cos\theta(1 + sin\theta)

\rm \:  =  \:2 + 2sin\theta + 2cos\theta(1 + sin\theta)

\rm \:  =  \:2(1 + sin\theta) + 2cos\theta(1 + sin\theta)

\rm \:  =  \: 2(1 + sin\theta)(1 + cos\theta)

Hence,

 \red{\boxed{\tt{ \sf \:  {(1 + sin\theta + cos\theta)}^{2}  = 2(1 + sin\theta)(1 + cos\theta)}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions