Math, asked by domnalnishra, 1 year ago

(1+sintheta)(1-sintheta)/(1+costheta)(1-costheta) evaluate if cot theta=7/8

Answers

Answered by chaudharypragati18
6

Answer:

(1-sinthita)(1+sinthita)/(1-costhita)(1+costhita)=1-sin2thita/ 1-cos2thita

=cos2thita/sin2thita ( :1-sin2thita=cos2thita and 1-cos2thita= sin2thita)

=cot2thita

And cotthita= 7/8

So cot2thita= 49/64

Step-by-step explanation:



domnalnishra: thnku
chaudharypragati18: Welcome
domnalnishra: cant we do 1=sin*1-sin=
chaudharypragati18: We can
domnalnishra: 1-sin*1+sin=1^2+sin^
domnalnishra: 2+2sintheta and make it cos^2theta
domnalnishra: then what happens to sin a
domnalnishra: plz tl
chaudharypragati18: I think I should think it first
Answered by kiranmai1626
4
Given cotθ = 7/8

Now {(1 + sinθ)*(1 - sinθ)}/{(1 + cosθ)*(1 - cosθ)}

= (1 - sin2 θ)/(1 - cos2 θ)

= cos2 θ/sin2 θ                  {since sin2 θ + cos2 θ = 1 }

= cot2 θ

= (7/8)2 

= 49/64


domnalnishra: thnku
Similar questions