( 1+sintheta-costheta/1+sintheta+costheta)( 1+sintheta-costheta/1+ sintheta + costheta)=1-costheta/1+ costheta
Answers
Answer:
((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) ) ((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) ) = (1 - Cosθ)/ (1 + Cosθ)
Step-by-step explanation:
( 1+sintheta-costheta/1+sintheta+costheta)( 1+sintheta-costheta/1+ sintheta + costheta)=1-costheta/1+ costheta
LHS
= ((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) ) ((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) )
= ((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) )²
= ( 1² + (Sinθ - Cosθ)² + 2*1((Sinθ - Cosθ)) /(1² + (Sinθ+ Cosθ)² + 2*1((Sinθ + Cosθ))
= ( 1 + Sin²θ + Cos²θ - 2SinθCosθ + 2(Sinθ - Cosθ)) / ( 1 + Sin²θ + Cos²θ + 2SinθCosθ + 2(Sinθ + Cosθ))
= ( 1 + 1 - 2SinθCosθ + 2(Sinθ - Cosθ)) / ( 1 + 1 + 2SinθCosθ + 2(Sinθ + Cosθ))
= (2 - 2SinθCosθ + 2(Sinθ - Cosθ)) / ( 2 + 2SinθCosθ + 2(Sinθ + Cosθ))
= (1 - SinθCosθ + (Sinθ - Cosθ)) / ( 1 + SinθCosθ + (Sinθ + Cosθ))
= (1 + Sinθ -Cosθ(1 + Sinθ)) / (1 + Sinθ +-Cosθ(1 + Sinθ))
= (1 - Cosθ)(1 + Sinθ) / (1 + Cosθ)(1 + Sinθ)
= (1 - Cosθ)/ (1 + Cosθ)
= RHS
QED
Proved
((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) ) ((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) ) = (1 - Cosθ)/ (1 + Cosθ)