Math, asked by Adhyatma6695, 1 year ago

( 1+sintheta-costheta/1+sintheta+costheta)( 1+sintheta-costheta/1+ sintheta + costheta)=1-costheta/1+ costheta

Answers

Answered by amitnrw
3

Answer:

((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) ) ((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) ) =  (1 - Cosθ)/ (1 + Cosθ)

Step-by-step explanation:

( 1+sintheta-costheta/1+sintheta+costheta)( 1+sintheta-costheta/1+ sintheta + costheta)=1-costheta/1+ costheta

LHS

= ((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) ) ((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) )

= ((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) )²

= ( 1² + (Sinθ - Cosθ)² + 2*1((Sinθ - Cosθ)) /(1² + (Sinθ+ Cosθ)² + 2*1((Sinθ + Cosθ))

= ( 1 + Sin²θ + Cos²θ - 2SinθCosθ  + 2(Sinθ - Cosθ)) / ( 1 + Sin²θ + Cos²θ + 2SinθCosθ  + 2(Sinθ + Cosθ))

= ( 1 + 1 - 2SinθCosθ  + 2(Sinθ - Cosθ)) / ( 1 + 1 + 2SinθCosθ  + 2(Sinθ + Cosθ))

= (2 - 2SinθCosθ  + 2(Sinθ - Cosθ)) / ( 2 + 2SinθCosθ  + 2(Sinθ + Cosθ))

=  (1 - SinθCosθ  + (Sinθ - Cosθ)) / ( 1 + SinθCosθ  + (Sinθ + Cosθ))

= (1 + Sinθ  -Cosθ(1 + Sinθ)) / (1 + Sinθ +-Cosθ(1 + Sinθ))

= (1 - Cosθ)(1 + Sinθ) / (1 + Cosθ)(1 + Sinθ)

= (1 - Cosθ)/ (1 + Cosθ)

= RHS

QED

Proved

((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) ) ((1 + Sinθ - Cosθ)/(1 + Sinθ + Cosθ) ) =  (1 - Cosθ)/ (1 + Cosθ)

Similar questions