Math, asked by sandhyapatil5452, 8 months ago

1+sinx÷1+cosx integrate​

Answers

Answered by BrainlyPopularman
45

GIVEN :

  \\  \bf \implies \int \dfrac{1 +  \sin(x)}{1 +  \cos(x)} dx\\

TO FIND :

• Value of integration = ?

SOLUTION :

Let –

  \\ \implies\bf I = \int \dfrac{1 +  \sin(x)}{1 +  \cos(x)}.dx\\

• Rationalization of denominator –

  \\ \implies\bf I = \int \dfrac{(1 +  \sin x)(1  -  \cos x)}{(1 +  \cos x)(1 -  \cos x)}.dx\\

  \\ \implies\bf I = \int \dfrac{(1 +  \sin x)(1  -  \cos x)}{1 -  \cos^{2}x}.dx\\

  \\ \implies\bf I = \int \dfrac{1 +\sin x - \cos x - \sin x\cos x}{\sin^{2}x}.dx\\

  \\ \implies\bf I = \int \bigg( \dfrac{1}{\sin^{2}x} +  \dfrac{ \sin x}{\sin^{2}x}  -  \dfrac{ \cos x}{\sin^{2}x}  - \dfrac{\sin x\cos x}{\sin^{2}x} \bigg).dx\\

  \\ \implies\bf I = \int \bigg(cosec ^{2}x+cosec x-  \cot x.cosec x - \cot x  \bigg)dx\\

  \\ \implies\bf I = \int cosec ^{2}x.dx+ \int cosec(x).dx- \int\cot x.cosec x .dx- \int \cot x.dx\\

  \\ \large \implies{ \boxed{\bf I =  -  \cot(x)  -  \ln | cosec(x) +  \cot(x) | +cosec(x) - \ln| \sin(x) |+ c}}\\

USED FORMULA :

  \\  \longrightarrow \bf \int cosec ^{2}x.dx =  -  \cot(x) + c \\

  \\  \longrightarrow \bf \int cosec(x).dx =   -  \ln | cosec(x) +  \cot(x)|+ c\\

  \\  \longrightarrow \bf \int \cot x.cosec x .dx =   - cosec(x)+c\\

  \\  \longrightarrow \bf \int \cot x =    \ln| \sin(x) |+c \\


mddilshad11ab: Wonderful explaination bro ❤️
Vamprixussa: Nice !!
BrainlyPopularman: Thanks uhhhh ♥️
Similar questions