Math, asked by ayanali411414, 1 month ago

1+sinx/1-sinx=3. Find the value of x​

Answers

Answered by itsunique7
1

Given,

(sinx−1)

3

+(cosx−1)

3

+(sinx)

3

=(2sinx+cosx−2)

3

----------------1

We know that, (a+b+c)

3

=a

3

+b

3

+c

3

+(a+b+c)(ab+bc+ca)

Here a=sinx−1,b=cosx−1,c=sinx

(a+b+c)=(2sinx+cosx−2)

(ab+bc+ca)=(2sin

2

x+2sinxcosx−3sinx−cosx+1)

(1)(sinx−1)

3

+(cosx−1)

3

+(sinx)

3

=(sinx−1)

3

+(cosx−1)

3

+(sinx)

3

+(2sinx+cosx−2)(2sin

2

x+2sinxcosx−3sinx−cosx+1)

⇒(2sinx+cosx−2)(2sin

2

x+2sinxcosx−2sinx−sinx−cosx+1)=0

⇒(2sinx+cosx−2)(2sinx−1)(sinx+cosx−1)=0

(i) sinx=

2

1

∴x=

6

π

,

6

( as x∈[0,2π])

or

(ii) sinx+cosx=1

∴x=0,

2

π

,2π ( as x∈[0,2π])

or

(iii) 2sinx+cosx−2=0

2(sinx−1)=−cosx

4sin

2

x−8sinx+4=cos

2

x

5sin

2

x−8sinx+3=0

∴sinx=1or

5

3

cosx=2(1−sinx)

=2(1−

5

3

)=

5

4

sinx>0 and cosx>0

∴ x has one solution in 1st quadrant.

From (i),(ii),(iii), number of solutions of x=6

Answered by bipulpandit2006
0

Answer:

take this

Step-by-step explanation:

= sin^2(x/2) +cos^2((x/2) + 2sin(x/2)*cos(x/2)

={sin(x/2) +cos(x/2)}^2

Similarly,

1-sinx

= sin^2(x/2)+cos^2(x/2) - 2sin(x/2)*cos(x/2)

={sin(x/2)- cos(x/2)}^2

Similar questions