1+ sinx /cosecx- cos x +1- sin x /cos x + cotx =2(1+cot x)
Answers
Answer:
eNotessearch
Search for any book or any question
Search
trigonometry1 Questions and Answers
MENU
Prove the following identity: (1+ sin x + cos x) / (1+ sin x - cos x) = cot x/2
print Print document PDF list Cite
Expert Answers info
TUSHAR CHANDRA eNotes educator | CERTIFIED EDUCATOR
We have to prove that (1+ sin x + cos x) / (1+ sin x - cos x) = cot x/2
Now sin 2x = 2 sin x * cos x and cos 2x = 2 (cos x)^2 - 1
(1+ sin x + cos x) / (1+ sin x - cos x)
=> [1+2*(sin x/2)*(cos x/2) + 2*(cos x/2)^2 - 1]/ [1 + 2*(sin x/2)*(cos x/2)-1+2( sin x/2)^2]
eliminate 1 as we have -1 and +1 in the numerator and denominator.
[2*(sin x/2)*(cos x/2) + 2*(cos x/2)^2]/ [2*(sin x/2)*(cos x/2)+2( sin x/2)^2]
cancel 2 from the numerator and denominator
=> [(sin x/2)*(cos x/2) + (cos x/2)^2 ] / [(sin x/2)*(cos x/2) + ( sin x/2)^2]
factorize
=> [cos x/2*( sin x/2 + cos x/2)]/[sin x/2*( cos x/2 + sin x/2)]
cancel (sin x/2 + cos x/2)
=> (cos x/2) / (sin x/2)
=> cot x/2
Therefore we have proved that (1+ sin x + cos x) / (1+ sin x - cos x) = cot x/2