1+sinx+cosx/1+sinx-cosx=cotx/2
Answers
Answered by
1
Answer:
LHS = (1-sin x + cos x)/(1-sin x - cos x) or
= [(cos^2 (x/2) + sin^2 (x/2) - 2 sin (x/2)cos (x/2) + cos^2 (x/2) - sin^2 (x/2)] / [(cos^2 (x/2) + sin^2 (x/2) - 2 sin (x/2)cos (x/2) - cos^2 (x/2) + sin^2 (x/2)], or
= [2 cos^2 (x/2) - 2 sin (x/2)cos (x/2)]/[2 sin^2 (x/2) - 2 sin (x/2)cos (x/2)], or
= 2cos (x/2)[cos (x/2) - sin(x/2)] / 2[sin (x/2)[-cos (x/2) + sin(x/2)], or
= -2cos (x/2)[cos (x/2) - sin(x/2)] / 2[sin (x/2)[cos (x/2) - sin(x/2)], or
= - cos (x/2)/ sin (x/2)
= - cot (x/2). Proved.
please mark me as the brainliest.......
Similar questions