Math, asked by ddolmenkim, 1 month ago

1. Solve each of the following pairs of inequalities​

Attachments:

Answers

Answered by Anonymous
4

Answer is given in attachment.

Attachments:
Answered by mathdude500
5

Given Question :-

Solve each of the following pairs of inequalities :

  \sf \: (a) \:  \: 5 - a \leqslant a - 6 \leqslant 10 - 3a

 \sf \: (b) \:  \: 4 - b < 2b - 1 < 7 + b

 \green{\large\underline{\sf{Solution-(a)}}}

Given inequality is

\rm :\longmapsto\:\: 5 - a \leqslant a - 6 \leqslant 10 - 3a

can be rewritten as

\rm :\longmapsto\:\: 5 - a \leqslant a - 6  \: and \: a - 6\leqslant 10 - 3a

\rm :\longmapsto\:\:  - a - a \leqslant  - 5 - 6  \: and \: a + 3a\leqslant 10  + 6

\rm :\longmapsto\:\:  - 2a \leqslant  - 11 \: and \: 4a\leqslant 16

\bf\implies \:a \geqslant \dfrac{11}{2}  \:  \: and \:  \: a \leqslant 4

\bf\implies \:x \:  \in \: \bigg[\dfrac{11}{2}, \: 4\bigg]

 \green{\large\underline{\sf{Solution-(b)}}}

Given inequality is

\rm :\longmapsto\: 4 - b < 2b - 1 < 7 + b

can be rewritten as

\rm :\longmapsto\: 4 - b < 2b - 1  \:  \: and \:  \: 2b - 1< 7 + b

\rm :\longmapsto\:  - b - 2b <  - 1 - 4  \:  \: and \:  \: 2b - b < 7 + 1

\rm :\longmapsto\:   - 3b <  - 5  \:  \: and \:  \: b < 8

\rm :\longmapsto\:   b  > \dfrac{5}{3}   \:  \: and \:  \: b < 8

\bf\implies \:\dfrac{5}{3}  < b < 8

\bf\implies \:b \:  \in \: \bigg(\dfrac{5}{3} , \: 8\bigg)

Additional Information :-

\boxed{ \bf{ \: x > y \:  \: \bf\implies \: - x <  - y}}

\boxed{ \bf{ \: x  <  y \:  \: \bf\implies \: - x  >   - y}}

\boxed{ \bf{ \:  - x  <  y \:  \: \bf\implies \: x  >   - y}}

\boxed{ \bf{ \:  - x   >   y \:  \: \bf\implies \: x   <    - y}}

\boxed{ \bf{ \: x \geqslant y \:  \: \bf\implies \:  - x \leqslant - y}}

\boxed{ \bf{ \: -  x \geqslant y \:  \: \bf\implies \:  x \leqslant - y}}

\boxed{ \bf{ \:  x \leqslant y \:  \: \bf\implies \:   - x \geqslant - y}}

Similar questions