Math, asked by sanskrutipardeshi106, 3 months ago

1. solve
 \frac{2}{x}  -  \frac{3}{y}  = 15. \:  \frac{8}{x}  +  \frac{5}{y}  = 77

Answers

Answered by mathdude500
1

 \large\underline\blue{\bold{Given \:  Question :-  }}

☆Solve the equations :-

\bf \:\dfrac{2}{x}  - \dfrac{3}{y}  = 15

\bf \:\dfrac{8}{x}  + \dfrac{5}{y}  = 77

─━─━─━─━─━─━─━─━─━─━─━─━─━

 \large\underline\green{\bold{Solution :-  }}

☆ Let us suppose that

\bf \:\dfrac{2}{x}  - \dfrac{3}{y}  = 15 \:  ⟼ \: (1)

\bf \:\dfrac{8}{x}  + \dfrac{5}{y}  = 77 \: ⟼ \: (2)

\bf \:Let \: \dfrac{1}{x} = u \: ⟼(3) \: and \:  \dfrac{1 }{y}  = v \: ⟼ \: (4)

☆So, equation (1) and equation (2) can be rewritten as

\bf \:2u - 3v = 15 \: ⟼ \: (5)

\bf \:8u + 5v = 77 \: ⟼ \: (6)

☆Multiply equation (6) by 1 and (5) by 4 we get

\bf⟼ \:8u - 12v = 60 \: ⟼ \: (7)

\bf ⟼\:8u + 5v = 77 \: ⟼ \: (8)

☆On substracting equation (7) from (8), we get

\bf\implies \:17v = 17

\bf\implies \:v = 1 \: ⟼ \: (9)

☆On substituting value of v = 1 in equation (5), we get

\bf \:  ⟼ 2u - 3 \times 1 = 15

\bf \:  ⟼ 2u = 15 + 3 = 18

\bf \:  ⟼ u = 9 \: ⟼ \: (10)

☆On substituting, equation (9) in (3) and (10) in (4), we get

\bf \:  ⟼ \dfrac{1}{x}  = 9 \: and \: \dfrac{1}{y}  = 1

\bf\implies \:x = \dfrac{1}{9}  \: and \: y = 1.

─━─━─━─━─━─━─━─━─━─━─━─━─━

\begin{gathered}\begin{gathered}\bf So \: values \: are \:  = \begin{cases} &\bf{x =  \dfrac{1}{9} } \\ &\bf{y = 1} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─━

Similar questions