1)
Solve the following equations. (x2 + x) (x2 + x - 2) = 24
the following quadratic from th
Answers
____________
(x^2 + x) (x^2 + x - 2) = 24
Let, y = x^2 + x
✔️ So, y (y - 2) = 24
Or, y^2 - 2y - 24 = 0
Or, y^2 - 6y + 4y - 24 = 0
Or, y(y - 6) + 4(y - 6) = 0
Or, (y - 6)(y + 4) = 0.
Or, y = 6, - 4 ✔️
Thus, x^2 + x = 6, - 4
✔️ So, x^2 + x = 6
Or, x^2 + x - 6 = 0
Or, x^2 + 3x - 2x - 6 = 0
Or, x(x + 3) - 2(x + 3) = 0
Or, (x + 3)(x - 2) = 0
Or, x = 2, - 3 ✔️
And, x^2 + x = - 4
Or, x^2 + x + 4 = 0
But, D = b^2 - 4ac
= (1)^2 - 4.1. 4
= 1 - 16 = - 15
Since, D < 0, so it is not possible to have such a quadratic equation.
Hence, x = 2, - 3.
____________
Thanks..
Step-by-step explanation:
(x^2 + x) (x^2 + x - 2) = 24
Let, y = x^2 + x
✔️ So, y (y - 2) = 24
Or, y^2 - 2y - 24 = 0
Or, y^2 - 6y + 4y - 24 = 0
Or, y(y - 6) + 4(y - 6) = 0
Or, (y - 6)(y + 4) = 0.
Or, y = 6, - 4 ✔️
Thus, x^2 + x = 6, - 4
✔️ So, x^2 + x = 6
Or, x^2 + x - 6 = 0
Or, x^2 + 3x - 2x - 6 = 0
Or, x(x + 3) - 2(x + 3) = 0
Or, (x + 3)(x - 2) = 0
Or, x = 2, - 3 ✔️
And, x^2 + x = - 4
Or, x^2 + x + 4 = 0
But, D = b^2 - 4ac
= (1)^2 - 4.1. 4
= 1 - 16 = - 15
Since, D < 0, so it is not possible to have such a quadratic equation.
Hence, x = 2, - 3.