Math, asked by reshma4675, 11 months ago

1. Solve the following pairs of equations by reducing them to a pair of linear equations:
7x-2y/xy=5
8x+7y/xy=15​

Answers

Answered by ShírIey
151

AnswEr:

Given Equation

\bullet\:\sf\: \dfrac{7x \:-\:2y}{xy} = 5

 \:\:\: \sf\dfrac{8x \:+\:7y}{xy} = 15

:\implies\sf\: \dfrac{7x}{xy} \:-\: \dfrac{2y}{xy} = 5 ---------[Equation 1]

:\implies\sf\:  \dfrac{7}{y}\:-\:\dfrac{2}{x} = 5

:\implies\sf\: 7 \times \dfrac{1}{y}\:-\: 2 \times \dfrac{1}{x}=5

Here, we get \sf\dfrac{1}{y} = v \:\& \: \dfrac{1}{x} = u

Similarly,

:\implies\sf\: \dfrac{8x}{xy}\:+\:\dfrac{7y}{xy} = 15 ---------[Equation 2]

:\implies\sf\: \dfrac{8}{y} \:+\;\dfrac{7}{x} = 15

:\implies\sf\: 8 \times \dfrac{1}{y} \:+\: 7 \times \dfrac{1}{x} = 15

Now, From Equation 1 & 2

:\implies\sf\: 7v - 2u = 5 ------[Equation 3]

:\implies\sf\: 8v + 7u = 15 -----[Equation 4]

Multiplying Equation Equation (3) by 7 and Equation (4) by 2

:\implies\sf\: 7 \times [7v \:-\:2u]  = 5 \times 7

:\implies\sf\bold{49v\: -\: 14u\: =\: 35} -------[Equation 5]

:\implies\sf\: 2 \times [8v \:+\:7u] = 15 \times 2

:\implies\sf\bold{16v\:+\:14u\:=\:30} --------[Equation 6]

Now, From Equations 5 & 6

:\implies\sf\: 49v - 14u = 35

:\implies\sf\: 16v + 14u = 30

:\implies\sf\: 65v = 65

:\implies\sf\: v = \cancel\dfrac{65}{65}

:\implies\boxed{\sf{\pink{v\:=\:1}}}

\rule{200}2

Substituting the Value of v in Equation 3

:\implies\sf\: 7v - 2u = 5

:\implies\sf\: 7(1) - 2u = 5

:\implies\sf\: -2u = 5 - 7

:\implies\sf\: -2u = -2

:\implies\sf\: u = \cancel\dfrac{-2}{-2}

:\implies\boxed{\sf{\pink{u\:=\:1}}}

\rule{200}2

:\implies\sf\: \dfrac{1}{y} = v

:\implies\sf\: \dfrac{1}{y} = 1

:\implies\sf\: 1 = y \times 1

:\implies\boxed{\sf{\pink{y\:=\:1}}}

\rule{200}2

:\implies\sf\:\dfrac{1}{x}=u

:\implies\sf\: \dfrac{1}{x}=1

:\implies\sf\: 1 = x \times 1

:\implies\boxed{\sf{\pink{x\:=\:1}}}

Hence, Value of x & y is 1.

Answered by JanviMalhan
135

Question:

1. Solve the following pairs of equations by reducing them to a pair of linear equations:

 \sf \star \: \frac{7x - 2y}{xy}  = 5 \\ \\    \sf \: \frac{8x + 7y}{xy}  = 15

Solution:

  \sf\frac{7x - 2y}{xy}  = 5 \\  \\   \sf\frac{7x}{xy}  -   \frac{2y}{xy}  = 5 \\  \\ \sf  \frac{7}{y}  =  \frac{2}{x}  = 5 \\  \\ \sf  \frac{ - 2}{x}  +  \frac{7}{y}  = 5.....(1) \\  \\   \sf\frac{8x + 7y}{xy}  = 15 \\  \\ \sf  \frac{8}{y}  +  \frac{7}{x}  = 15 \\  \\  \sf \frac{7}{x}  +  \frac{8}{y}  = 15.....(2)

 \sf \orange{required \: equations \: are : }

  \sf \frac{ - 2}{x}  +  \frac{7}{y}  = 5.....(1) \\  \\  \sf \frac{7}{x}  +  \frac{8}{y}  = 15.....(2) \\  \\  \sf \:  - 2u \:  + 7v \:  = 5....(3) \: and \\  \sf \: 7u \:  + 8v \:  = 15....(4) \\  \\  \sf \blue{ \:\: from \: equation \: (3)}

  \sf- 2u \:  + 7v \:  = 5 \\ \\  \sf 7v \:  =  \: 5 + 2u \\ \\   \sf \: v \:  =  \frac{5 + 2u}{7}  \\  \\  \sf \pink{ \underline{now \: , \: putting \:  \: value \: of \: v \: in \: eq \:   (4)}} \\  \\  \sf \: 7u \:  + 8v \:  = 15 \\  \\  \sf \: 7u \:  + 8( \frac{5 + 2u}{7} ) = 15 \\  \\  \sf \green {\underline{ \: now, \: multiplying \: 7 \: both \: sides}} \\  \\ \sf \:  7 \times 7u \:  + 7 \times 8( \frac{5 + 2u}{7}  )= 7 \times 15 \\  \\  \sf49u \:   + 8(5 + 2u) = 105 \: \\  \\   \sf{ \: 49u + 40 + 16u = 105} \\  \\ \sf  \: 49u \:  + 16u \:  = 105 - 40 \\  \\ \sf  \implies \:  \:   \cancel\frac{65u}{65}  \\  \\  \:  \:  \:  \:  \:  \:  \: \sf {\boxed {\bold{u \:  = 1}}} \\  \\

 \sf \blue{putting \: the \: value \: of \: u \: in \: eq(3)}

  \sf- 2u \:  + 7v \:  = 5 \\  - 2 \:  + 7v \:  = 5 \\ \sf 7v \:  = 5 + 2 \\  \sf7v \:   = 7 \\  \sf v \:  =  \cancel\frac{7}{7}  \\  \\  \:  \ \sf {\boxed {\bold{v \:  = 1}}}  \: \\  \\  \sf \red {\underline{hence, \: value \: of \: u \:  = 1 \: and \: v = 1}}

 \sf \green{But \:  in \:  question \:  it  \: is \:  asking  \: to } \\  \sf \green{find \:  the \:  value \:  of  \: x \:  and  \: y.}

  \sf \red{ \underline{finding \: the \: value \: of \: x}} \\  \\   \sf{ \: u \:  =  \frac{1}{x}} \\ \\   \sf{ \: 1 =  \frac{1}{x} } \\  \\  \bold \blue { \underline{ \: x = 1}} \:  \:  \:

 \sf \red{ \underline{finding \: the \: value \: of \: y}} \\  \\  \sf \: v \:  =  \frac{1}{y}  \\ \\    \: \sf{1 =  \frac{1}{y} } \\  \\   \:  \:  \bold \blue{ \underline{y = 1}}

 \sf \underline \pink{hence \: , \: the \: value \: of \: x = 1 \: and \: y = 1}

Similar questions