Math, asked by arundz143, 4 months ago

1. Solve the following quadratic equation x2 + 3ix + 10 = 0.​

Answers

Answered by Shahqueen123456879
0

Step-by-step explanation:

 {x}^{2}  + 3x + 10 = 0 \\  {x}^{2} + 5x - 2x + 10 = 0 \\ x(x + 5) - 2(x + 5) \\ (x + 5)(x - 2)

I hope it helps you

Answered by SugarCrash
35

Answer :

 \large \sf \implies x = \dfrac{-52i}{2} ,\dfrac{46i}{2} \\

Solution :

Question :

  • Solve the following quadratic equation x² + 3ix + 10 = 0.

Let's solve,

\red\bigstar \: \boxed{x = \dfrac{-b±\sqrt{b^2 -4ac}}{2a}}

Here,

  • a = 1
  • b = 3i
  • c = 10

\LARGE\color{green} \underline{\underline{\mathfrak{Substituting \: the\: values}}}

 \large \sf x = \dfrac{-(3i) ±\sqrt{(3i)^2 -4(1)(10)}}{2a}

 \large \sf x = \dfrac{-(3i) ±\sqrt{9i^2 -4(1)(10)}}{2a}

\:\:\:\:\;\:\:\:\:\red\bigstar\:\color{blue}\boxed{\sf i^2 = -1}

 \large \sf \implies x = \dfrac{-3i ±\sqrt{9(-1)-40}}{2(1)}

 \large \sf \implies x = \dfrac{-3i ±\sqrt{-9-40}}{2}

 \large \sf \implies x = \dfrac{-3i ±\sqrt{-49}}{2}

\:\:\:\:\;\:\:\:\:\red\bigstar\:\color{blue}\boxed{ \sf i = \sqrt{-1}}

So,

 \large \sf \implies x = \dfrac{-3i ± (-49i)}{2}

 \large \sf \implies x = \dfrac{-3i + (-49i)}{2} ,\dfrac{-3i - (-49i)}{2}

 \large \sf \implies x = \dfrac{-3i - 49i}{2} ,\dfrac{-3i +49i}{2}

 \large \sf \implies x = \dfrac{-52i}{2} ,\dfrac{46i}{2}

Hence,

 \large \sf \implies x = \dfrac{-52i}{2} ,\dfrac{46i}{2}

{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} 

Similar questions