Math, asked by Vaishnavi2107, 2 months ago

1. Solve the following system of equations by substitution method.

Problem in attachment ​

Attachments:

Answers

Answered by gn786mundas
2

Answer:

enjoy your day ✌⚡

or kuch quire hogi yo message krna

Attachments:
Answered by BlessedOne
18

Given :

  • Equation 1 : \sf\:\frac{x}{6}+y=1

  • Equation 2 : \sf\:3x-8y=5

To find :

  • The value of x and y.

Concept of Substitution method :

\bf\multimap Solving the first equation we will get the value of any variable.

\bf\multimap Then after substituting this value in equation 2 and solving it.

\bf\multimap Finally re - substituting the value in original equation to calculate the value of other variable.

Solution :

Let -

⠀⠀⠀⌬ \sf\:\frac{x}{6}+y=1 -- \small{\mathfrak\red{1}}

⠀⠀⠀⌬ \sf\:3x-8y=5 -- \small{\mathfrak\red{2}}

From equation 1 calculating the value of x -

\sf\:\frac{x}{6}+y=1

\sf\implies\:\frac{x+6y}{6}=1

\sf\implies\:x+6y=6

\sf\color{gray}{\implies\:x=6-6y}

Substituting the value of x in equation 2 -

\sf\:3x-8y=5

\sf\implies\:3(6-6y)-8y=5

\sf\implies\:18-18y-8y=5

\sf\implies\:18-26y=5

\sf\implies\:-26y=5-18

\sf\implies\:-26y=-13

\sf\implies\:\cancel{-}26y=\cancel{-}13

\sf\implies\:y=\cancel{\frac{13}{26}}

\small{\underline{\boxed{\mathrm{\implies\:y=\frac{1}{2}}}}} \color{orange}{⋆}

Now again substituting the value of y in 1 -

\sf\:\frac{x}{6}+y=1

\sf\implies\:\frac{x}{6}+\frac{1}{2}=1

\sf\implies\:\frac{x+3}{6}=1

\sf\implies\:x+3=6

\sf\implies\:x=6-3

\small{\underline{\boxed{\mathrm{\implies\:x=3}}}} \color{orange}{⋆}

\sf\therefore\:Value~of~x~is~3~and~that~of~y~is~\frac{1}{2}.

═══════════════════‎

Verification :

Plugging the value of x and y in equation 1 -

\sf\:\frac{x}{6}+y=1

\sf\leadsto\:\frac{3}{6}+\frac{1}{2}=1

\sf\leadsto\:\frac{3+3}{6}=1

\sf\leadsto\:\frac{6}{6}=1

\sf\leadsto\:\cancel{\frac{6}{6}}=1

\sf\leadsto\:1=1

Hence Verified !~

Similar questions