Math, asked by nivedita43, 3 months ago

1. Solve the following using a suitable identity:
(a) (y+8)(y + 8)

Answers

Answered by Anonymous
27

Answer:

Step-by-step explanation:

(y+8)(y+8)

identity - a²+2ab+b²

y² + 2x8y+ 64

y² + 16y + 64

Hope it helps!!⚡

Answered by MrImpeccable
8

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Solve:

  • (y + 8)(y + 8)

Solution:

➡ (y + 8)(y + 8)

➡ (y + 8)²

➡ y² + 2(y)(8) + 8²

y² + 16y + 64

Formula Used:

  • (a + b)² = a² + 2ab + b²

Learn More:

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\bf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\bf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\bf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) - B^{3}\\\\8)\bf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\9)\bf\: A^{3} - B^{3} = (A-B)(A^{2} + AB + B^{2})\\\\ \end{minipage}}

Similar questions