Math, asked by chanchalverma8585, 1 month ago

1. Solve this puzzle. 1 3 2 5 Top to bottom 1- LCM of 25 and 30., 2- HCF of 100 and 175. Left to right 3-LCM of 64 and 256, 4 HCF of 66 and 110, 5 HCF of two numbers is 3 and their LCM is 36. What is the product of the two numbers.​

Answers

Answered by rameshnakkadasari8
0

Answer:

please mark me brain list

Step-by-step explanation:

LCM of 15 and 25 is the smallest number among all common multiples of 15 and 25. The first few multiples of 15 and 25 are (15, 30, 45, 60, 75, . . . ) and (25, 50, 75, 100, 125, 150, 175, . . . ) respectively. There are 3 commonly used methods to find LCM of 15 and 25 - by listing multiples, by division method, and by prime factorization.

The LCM of two non-zero integers, x(15) and y(25), is the smallest positive integer m(75) that is divisible by both x(15) and y(25) without any remainder.

Answered by aastha123463
0

Answer:

\mathcal{ANSWER}

Methods to Find LCM of 15 and 25

The methods to find the LCM of 15 and 25 are explained below.

By Prime Factorization Method

By Listing Multiples

By Division Method

Step-by-step explanation:

\mathscr{MARK AS BRANLIST}

\mathscr{MARK  \:  \: AS \:  \:  BRANLIST}

Similar questions