Math, asked by lahariyadav5236, 11 months ago

1 square +2 square +3 square +4 square............+n square = n(n+1)(2n+1) whole divided by 6

Answers

Answered by Syamkumarr
7

Answer:

Proof below:

Step-by-step explanation:

1² + 2² + 3² + 4² + . . . . . . . . . . . . . + n² =  \frac{n(n+1)(2n+1)}{6}

We use Mathematical Induction to prove the following

For n = 1

LHS = 1² = 1

RHS =  \frac{1(1+1)(2*1+1)}{6} =  \frac{1(2)(3)}{6} =    \frac{6}{6} = 1

As LHS = RHS, it is true for n = 1

For n = k

It it hold true for n = k

=> 1² + 2² + 3² + 4² + . . . . . . . . . . . . . + k² =  \frac{k(k+1)(2k+1)}{6}

For n = k+1

For this, we need to show that

1² + 2² + 3² + 4² + . . . . . . . . . . . . . + (k+1)² =  \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}

1² + 2² + 3² + 4² + . . . . . . . . . . . . . + (k+1)² =  \frac{(k+1)(k+2)(2k+3)}{6}

Proof:

Taking LHS

= 1² + 2² + 3² + 4² + . . . . . . . . . . . . . + (k+1)²

=1² + 2² + 3² + 4² + . . . . . . . . . . . . . k² + (k+1)²

As we have already proved that

1² + 2² + 3² + 4² + . . . . . . . . . . . . . + k² =  \frac{k(k+1)(2k+1)}{6}

Therefore, on substituting, we get,

= \frac{k(k+1)(2k+1)}{6} + (k+1)²

= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}        (Taking LCM)

= \frac{(k+1)[2(2k+1) + 6(k+1)]}{6}        (Taking common)

= \frac{(k+1)(2k^{2}+k + 6k+6)}{6}           (Opening the brackets)

= \frac{(k+1)(2k^{2}+7k+6)}{6}  

= \frac{(k+1)(2k^{2}+4k+3k +6)}{6}

=  \frac{(k+1)(2k(k+2)+3(k+2)}{6}

=  \frac{(k+1)((k+2)(2k+3)}{6}

= RHS

Therefore, it is true for n = k+1

As it is true for n = k+1, it will be true for all values of n

Hence proved.    

Answered by krakshitha382
0

Step-by-step explanation:

i hope you will understand

Attachments:
Similar questions