Math, asked by girishbalasharavanan, 8 months ago

1 st question 2nd subdivision

Attachments:

Answers

Answered by Anonymous
3

\huge\bf\mathfrak\pink{\underline{\underline{\underline{Answer}}}}

\boxed{\bf{(x-3)[(x-1)(x+5)]} }

\huge\bf\red{\underline{\underline{\underline{Step-by-Step\:Explanation}}}}

\huge\bf\green{\underline{\underline{Given,}}}

\boxed{\bf{{x}^{3}+{x}^{2}-17x+15=0}}

\bf{To\:factorise\:we\:will\:find\:the\:first\:factor\:by\: substituting\:the\: values\:and\:find\:a\:factor}

\bf{So,\:we\: substitute\:+1,\:-1\:,+2\:,\:-2 \: and \:so\:on\:to\:find\:the\:first\:factor}

\bf{If\:we\:substitute\:+1\: , \:-1 \:,\: +2 \:,\: -2 \:the \:remainder \:is \:not \:zero}

\bf{But,if \:we \:substitute\: +3 \:in\: the\: equation, \:the \:remainder \:is \:zero}

\bf{\underline{LHS}}

\bf\red{{3}^{3}+{3}^{2}-17*3+15}

\bf\red{27+9+15-51}

\bf\red{0}

\bf{\underline{RHS}}

\bf\red{0}

\boxed{\bf{LHS=RHS}}

\bf{So,(x-3) is the first factor of equation}

\bf{After calculating the first factor, we divide the equation with the first factor.}

\bf{The \:quotient \:received \:will \:be\: the \:product \:of \:the \:two\: more\: factors\: of \:the \:equation.}

\bf{I\:have\:attached \:the \:image\: of division\: because\: I \:can't \:solve\: on\: brainly. \:Please \:see \:it\: below \:for\: the\: answer.}

\bf{From\: the \:image, \:the\: quotient\: is \:{x}^{2}+4x-5=0}

\bf{Solving \:the \:above\: quadratic\: equation, \:we\: get}

\boxed{\bf{{x}^{2}-x+5x-5}}

\boxed{\bf{x(x-1)+5(x-1)}}

\boxed{\bf{(x-1)(x+5)}}

\bf{So,\: the\: three \:factors \:of \:the\: equation\: are \:(x-3) \:{ \:( x-1 )\: ( x + 5 ) \:} }

\boxed{\bf{Factors\:of\:{x}^{3}+{x}^{2}-17x+15=(x-3)[(x-1)(x+5)]}}

\bf\green{Please\:mark\: the\: answer\: as \:brainliest}

\bf{ Stay \:Home \:And \:Stay\:Safe}

\huge\bf{\underline{\underline{Thanks}}}

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

Similar questions