Math, asked by nbhoyar505, 1 month ago

1, = ſtan
 tan}^{n}
x dx , then
1
In
tan
n-1 x-In-2
n-1​

Answers

Answered by gyaneshwarsingh882
0

Answer:

Step-by-step explanation:

Functions consisting of products of the sine and cosine can be integrated by using substitution and trigonometric identities. These can sometimes be tedious, but the technique is

straightforward. Some examples will suffice to explain the approach.

EXAMPLE 10.1.1 Evaluate Z

sin5 x dx. Rewrite the function:

Z

sin5 x dx =

Z

sin x sin4 x dx =

Z

sin x(sin2 x)

2

dx =

Z

sin x(1 − cos2 x)

2

dx.

Now use u = cos x, du = − sin x dx:

Z

sin x(1 − cos2 x)

2

dx =

Z

−(1 − u

2

)

2

du

=

Z

−(1 − 2u

2 + u

4

) du

= −u +

2

3

u

3 −

1

5

u

5 + C

= − cos x +

2

3

cos3 x −

1

5

cos5 x + C.

function:

Z

sin6 x dx =

Z

(sin2 x)

3

dx =

Z

(1 − cos 2x)

3

8

dx

=

1

8

Z

1 − 3 cos 2x + 3 cos2

2x − cos3

2x dx.

Now we have four integrals to evaluate:

Z

1 dx = x

and

Z

−3 cos 2x dx = −

3

2

sin 2x

are easy. The cos3

2x integral is like the previous example:

Z

− cos3

2x dx =

Z

− cos 2x cos2

2x dx

=

Z

− cos 2x(1 − sin2

2x) dx

=

Z

1

2

(1 − u

2

) du

= −

1

2

u −

u

3

3

= −

1

2

sin 2x −

sin3

2x

3

.

And finally we use another trigonometric identity, cos2 x = (1 + cos(2x))/2:

Z

3 cos2

2x dx = 3 Z

1 + cos 4x

2

dx =

3

2

x +

sin 4x

4

Similar questions