Math, asked by ghodasainihikmat88, 2 days ago

1. State the evaluation theorem of calculus also evaluate ∫ log x dx.

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

  \displaystyle  \tt{\int  \: log(x) \: dx }

  \displaystyle  \sf{ = log(x)\int  dx  -  \int \bigg \{ \dfrac{d}{dx}(log(x)) \int \: dx  \bigg \}\: dx}

  \displaystyle  \sf{ = log(x) \cdot \: x  -  \int \bigg \{ \dfrac{1}{x}\cdot \: x  \bigg \}\: dx}

  \displaystyle  \sf{ = log(x) \cdot \: x  -  \int  dx}

  \displaystyle  \sf{ = log(x) \cdot \: x  -  x +C}

  \displaystyle  \sf{ = x \{log(x)  -  1 \} +C}

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\int\rm logx \: dx

can be rewritten as

\rm \:  =  \:\displaystyle\int\rm logx \: . \: 1 \: dx

We know,

Integration by Parts

 \red{ \boxed{\displaystyle\int\rm uvdx = u\displaystyle\int\rm vdx -\displaystyle\int\rm  \bigg[\dfrac{d}{dx}u\displaystyle\int\rm vdx\bigg]dx}}

So, here,

 \red{\rm :\longmapsto\:u \:  =  \: logx \: }

 \red{\rm :\longmapsto\:v \:  =  \: 1 \: }

So, on substituting the values in above formula, we get

\rm \:  = \: logx\displaystyle\int\rm 1dx - \displaystyle\int\rm \bigg[\dfrac{d}{dx}logx\displaystyle\int\rm 1 \: dx\bigg]dx

We know

\boxed{ \tt{ \: \dfrac{d}{dx}x = 1}} \:  \: and \:  \: \boxed{ \tt{ \: \displaystyle\int\rm  {x}^{n}dx =  \frac{ {x}^{n + 1} }{n + 1}  + c}}

So, on using this, we get

\rm \:  =  \:logx \times x - \displaystyle\int\rm  \frac{1}{x}  \times x \: dx

\rm \:  =  \:xlogx - \displaystyle\int\rm 1 \: dx

\rm \:  =  \:xlogx \:  - \:  x \:  +  \: c

\rm \:  =  \:x(logx \:  - \:  1)\:  +  \: c

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \:  \: \displaystyle\int\rm logx \: dx = x(logx - 1) + c \:  \: }}

Basic Concept Used

Integration by Parts

See the rule:

 \red{ \boxed{\displaystyle\int\rm uvdx = u\displaystyle\int\rm vdx -\displaystyle\int\rm  \bigg[\dfrac{d}{dx}u\displaystyle\int\rm vdx\bigg]dx}}

↝ u is the function u(x)

↝ v is the function v(x)

↝ u' is the derivative of the function u(x)

↝ For integration by parts ,

The ILATE rule is used to choose u and v.

where,

  • I - Inverse trigonometric functions

  • L -Logarithmic functions

  • A - Arithmetic and Algebraic functions

  • T - Trigonometric functions

  • E- Exponential functions

The alphabet which comes first is choosen as u and other as v.

More to know :-

 \blue{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}}

Similar questions