Math, asked by hetu5225, 4 months ago


(1) STATISTICS
(2) BOOKKEEPER
(3) APPEARING
It
11. How many total arrangements can be made using all letters of the following words​

Answers

Answered by mathdude500
4

\large\underline\blue{\bold{Given \:  Question :-  }}

How many total arrangements can be made using all letters of the following

\begin{gathered}\begin{gathered}\bf words= \begin{cases} &\sf{1. STATISTICS} \\ &\sf{2. BOOKKEEPER} \\ &\sf{3.APPEARING}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Formula \:  used:-  }}

A permutation is the choice of r things from a set of n things without replacement and where the order matters.

\boxed{\bf \:^{n}P_r=\dfrac{n!}{(n-r)!}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\large \red{AηsωeR : 1.} ✍

☆The word is STATISTICS.

☆In this word, there are 10 alphabets, in which 3 S's, 3 T's and 2 I's are there. So,

\sf Number\:of\:ways =\dfrac{\:^{10 } P_{10}}{\:^{3} P_3\:^{3} P_3\:^{2} P_2}

\sf \:   = \dfrac{10!}{3! \times 3! \times 2!}

\sf \:   = \dfrac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3!}{3! \times 3 \times 2 \times 1 \times 2 \times 1}

\sf \:   = 50400

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\large \red{AηsωeR : 2.} ✍

☆The word is BOOKKEEPER.

☆In this word, there are 10 alphabets, in which 3 E's, 2 O's and 2 K's are there. So,

\sf Number\:of\:ways =\dfrac{\:^{10 } P_{10}}{\:^{3} P_3\:^{2} P_2\:^{2} P_2}

\sf \:   = \dfrac{10!}{3! \times 2! \times 2!}

\sf \:   = \dfrac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3!}{3! \times 2 \times 1 \times 2 \times 1}

\sf \:   = 151200

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\large \red{AηsωeR : 3.} ✍

☆The word is APPEARING.

☆In this word, there are 9 alphabets, in which 2 P'sand 2 A's are there. So,

\sf Number\:of\:ways =\dfrac{\:^{9} P_{9}}{\:^{2} P_2\:^{2} P_2}

\sf \:   = \dfrac{9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1}

\sf \:   = 90720

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions