1. Subtract :- 3xy²z from -12xy²z.
2. Find the product of 2x, 3x²y and -5xy²z².
3. Add :- 3xy - 4yz + 2zx ; 3yz + 6zx - 5y and 5y - 2yz + 3zx
4. Subtract :- 2pq ( p + q ) from 3pq ( p - q )
5. Multiply :- ( a² + b² ) and ( 5b - 3a )
Answers
EXPLANATION.
(1) Subtract :
⇒ - 3xy²z from - 12xy²z.
As we know that,
We can write equation as,
⇒ - 12xy²z - (- 3xy²z).
⇒ - 12xy²z + 3xy²z.
⇒ - 9xy²z.
(2) Find the products :
⇒ (2x), (3x²y) and (- 5xy²z²).
As we know that,
We can write equation as,
⇒ (2x)(3x²y)(- 5xy²z²).
⇒ - 30x⁴y³z².
(3) Add :
3xy - 4yz + 2zx and 3yz + 6zx - 5y and 5y - 2yz + 3zx.
As we know that,
We can write equation as,
⇒ (3xy - 4yz + 2zx) + (3yz + 6zx - 5y).
⇒ 3xy - 4yz + 2zx + 3yz + 6zx - 5y.
⇒ 3xy - yz + 8zx - 5y.
⇒ (3xy - yz + 8zx - 5y) + (5y - 2yz + 3zx).
⇒ 3xy - yz + 8zx - 5y + 5y - 2yz + 3zx.
⇒ 3xy - 3yz + 11zx.
(4) Subtract :
2pq(p + q) from 3pq(p - q).
As we know that,
We can write equation as,
⇒ 2p²q + 2pq² from 3p²q - 3pq².
⇒ (3p²q - 3pq²) - (2p²q + 2pq²).
⇒ 3p²q - 3pq² - 2p²q - 2pq².
⇒ p²q - 5pq².
⇒ pq(p - 5q).
(5) Multiply :
⇒ (a² + b²) and (5b - 3a).
As we know that,
We can write equation as,
⇒ (a² + b²) x (5b - 3a).
⇒ a²(5b - 3a) + b²(5b - 3a).
⇒ 5a²b - 3a³ + 5b³ - 3ab².