(1+tan 18°)(1 + tan 27) =
Answers
Answer:
Tan(A+B)=tanA+tanB/1-tanAtanB
tanA+tanB= tan(A+B)*(1-tanAtanB)
tan18+tan27=tan(18+27)*(1-tan18*tan27)
tan18+tan27=tan45*(1-tan18*tan27)
tan18+tan27 =1-tan18*tan27
tan18+tan27+tan18*tan27=1
The value of (1 + tan 18°)(1 + tan 27°) is 2.
Step-by-step explanation:
Given: (1 + tan 18°)(1 + tan 27°)
To Find: Value of the given expression
Solution:
- Finding the value of (1 + tan 18°)(1 + tan 27°) is 2
⇒ (1 + tan 18°)(1 + tan 27°) = 1 + tan 18° + tan 27° + tan 18°tan 27° . . . . . . (1)
Now, considering the term (tan 18° + tan 27°) such that using the identity,
we get,
⇒ tan 18° + tan 27° = tan (18° + 27°) × (1-tan 18°tan 27°)
⇒ tan 18° + tan 27° = tan (45°) × (1-tan 18°tan 27°)
⇒ tan 18° + tan 27° = 1 × (1-tan 18°tan 27°)
⇒ tan 18° + tan 27° = (1-tan 18°tan 27°) . . . . . (2)
Substituting (2) in (1), we get,
⇒ (1 + tan 18°)(1 + tan 27°) = 1 + 1 - tan 18°tan 27° + tan 18°tan 27°
⇒ (1 + tan 18°)(1 + tan 27°) = 1 + 1 = 2
Hence, the value of (1 + tan 18°)(1 + tan 27°) is 2.