1-tan^2θ / 1+ tan^2θ = (cos^2θ - sin^2θ)
Answers
Answered by
1
Solution :
Now,
L.H.S. = ( 1 - tan²θ ) / ( 1 + tan²θ )
= { 1 - ( sin²θ / cos²θ ) } / { 1 + ( sin²θ / cos²θ ) }
= { ( cos²θ - sin²θ ) / cos²θ } / { ( cos²θ + sin²θ ) / cos²θ }
= cos²θ - sin²θ, since cos²θ + sin²θ = 1
= R.H.S.
Hence, proved.
#MarkAsBrainliest
Now,
L.H.S. = ( 1 - tan²θ ) / ( 1 + tan²θ )
= { 1 - ( sin²θ / cos²θ ) } / { 1 + ( sin²θ / cos²θ ) }
= { ( cos²θ - sin²θ ) / cos²θ } / { ( cos²θ + sin²θ ) / cos²θ }
= cos²θ - sin²θ, since cos²θ + sin²θ = 1
= R.H.S.
Hence, proved.
#MarkAsBrainliest
Similar questions