1-tan^2(45- theta)/1+tan^2(45 degree-theta)=
(a)sin2 theta
(b)cos2 theta
(c) tan2 theta
(d) cot 2theta
Answers
Answered by
1
Step-by-step explanation:
Answer:
Value \: of \: \frac{1-tan^{2}45}{1+tan^{2}45}=0Valueof
1+tan
2
45
1−tan
2
45
=0
Step-by-step explanation:
\begin{gathered}Value \: of \: \frac{1-tan^{2}45}{1+tan^{2}45}\\=\frac{1-1}{1+1}\end{gathered}
Valueof
1+tan
2
45
1−tan
2
45
=
1+1
1−1
\* We know that
tan45° = 1*/
\begin{gathered}=\frac{0}{2}\\=0\end{gathered}
=
2
0
=0
Therefore,.
Value \: of \: \frac{1-tan^{2}45}{1+tan^{2}45}=0Valueof
1+tan
2
45
1−tan
2
45
=0
•••♪
Similar questions