Math, asked by wwwdevishukla9148, 8 months ago

(1 + tan^2 theta) cot theta/
cosec^2 theta =
tan theta​

Answers

Answered by Unicorn1000
0

Answer:

(1+tan²)cot/cosec²

sec²cot/cosec²

sin²cot/cos²

sin²cos/cos²sin

sin/cos

tan

which is equal to rhs

hence proved

Answered by Anonymous
165

To Prove :-

  • \sf \ \ \dfrac{(1+tan^2\theta)cot\theta}{cosec^2\theta}= tan\theta

Identities Used :-

  • \underline{\boxed{\sf\ \ 1+tan^2\theta= sec^2\theta}}

  • \underline{\boxed{\sf\ \ sec\theta= \dfrac{1}{cos\theta}}}

  • \underline{\boxed{\sf\ \ Cosec\theta= \dfrac{1}{sin\theta}}}

  • \underline{\boxed{\sf\ \ tan\theta= \dfrac{sin\theta}{cos\theta}}}

  • \underline{\boxed{\sf\ \ cot\theta= \dfrac{1}{tan\theta}}}

Proof :-

\sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   :\implies LHS\\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\pink{ :\implies\sf \ \dfrac{\bigg(1+tan^2\theta\bigg)cot\theta}{cosec^2\theta}}\\

\:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:    :\implies\sf \dfrac{\bigg(sec^2\theta\bigg)cot\theta}{cosec^2\theta}\\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    :\implies\sf\ \dfrac{\bigg(\dfrac{1}{cos^2\theta}\bigg)cot\theta}{\dfrac{1}{sin^2\theta}}\\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    :\implies\sf \ \dfrac{cot\theta}{cos^2\theta}\times sin^2\theta\\

 \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:   :\implies\sf\ \dfrac{cot\theta\times sin^2\theta}{cos^2\theta}\\

\:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:   :\implies\sf\ cot\theta\times \bigg(\dfrac{sin\theta}{cos\theta}\bigg)^2\\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   :\implies\sf \ \dfrac{1}{\cancel{tan\theta}}\times \cancel{\bigg(tan^2\theta\bigg)}\\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \pink{   :\implies\sf {\boxed{\sf\ tan\theta}}}\\

\sf\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    :\implies RHS\\

  •  \sf Hence,\: Proved.. !!
Similar questions