Math, asked by akshaykumarsingh0031, 9 months ago

1 + tan^2A/ 1 + cot^2A = (1 - tan^2/1 - cot^2A)^2 = tan^2 A .Prove this

Answers

Answered by MisterIncredible
17

Question : -

Prove that : -

1 + tan² A/1 + cot² A = ( 1 - tan A/1 - cot A )² = tan² A .

ANSWER

Given : -

1 + tan² A/1 + cot² A = ( 1 - tan A/1 - cot A )² = tan² A .

Required to prove : -

  • 1 + tan² A/1 + cot² A = tan² A

  • ( 1 - tan A/1 - cot A )² = tan² A

Identities used : -

sin² A + cos² A = 1

Proof : -

1 + tan² A/1 + cot² A = ( 1 - tan A/1 - cot A )² = tan² A .

We need to prove that ;

1 + tan² A/1 + cot² A = tan² A

( 1 - tan A/1 - cot A )² = tan² A

So,

Let's consider the 1st part : -

 \sf \dfrac{1 +  { \tan}^{2} A }{1 +  { \cot}^{2}A  }  =  { \tan}^{2} A \\   \\ \sf Consider \:  the \:  LHS \:  part  \:  \\  \\ \sf \dfrac{1 + { \tan }^{2} A}{ 1 + {\cot}^{2} A } \\  \\ \mathsf{ Since, \tan \theta = \dfrac{ \sin \theta }{ \cos \theta } \quad ( and ) \quad \cot \theta = \dfrac{ \cos \theta }{ \sin \theta}} \\  \\  \dfrac{ 1 + \dfrac{  { \sin}^{2} A}{ {\cos}^{2} A }}{1 + \dfrac{ {\cos }^{2} A }{ {\sin}^{2} A }}

 \sf\dfrac{ \dfrac{ {\cos}^{2} A +  {\sin}^{2} A }{ {\cos}^{2} A } }{ \dfrac{ {\sin}^{2} A+ {\cos}^{2}A }{ {\sin}^{2} A} }  \\  \\  \\ \sf Since , We  \: know  \: that \\  {\sin}^{2}  +  {\cos}^{2}  = 1 \\  \\  \\ \tt  \dfrac{ \dfrac{1}{ {\cos}^{2}A } }{ \dfrac{1}{ {\sin}^{2} A } }  \\  \\ \sf \dfrac{ 1 }{ \cos^2 A } \times \dfrac{ \sin^2 A }{ 1 } \\  \\ \sf \dfrac{ \sin^2 A }{ \cos^2 A} \\  \\ \sf \implies  {\tan}^{2} A

Similarly,

Consider the 2nd part : -

 \displaystyle \sf \left(  \dfrac{1 - \tan A }{ 1 - \cot A }\right)^2  = \tan^2 A\\  \\  \sf Consider \ the \ LHS \ part ;  \\  \\ \sf \left( \dfrac{ 1 - \tan A }{ 1 - \cot A  }\right)^2 \\  \\  \\ \sf We \ know \ that,  \\ \tt \tan A = \dfrac{ \sin A}{ \cos A} \\  \\  \\ \sf \left( \dfrac{ 1 - \dfrac{ \sin A }{ \cos A }}{ 1 - \dfrac{ \cos A }{ \sin A }}  \right )^2 \\  \\  \\ \sf \left(  \dfrac{ \left[ 1 - \dfrac{ \sin A}{ \cos A} \right]^2}{\left[ 1 - \dfrac{ \cos A}{\sin A} \right]^2} \right) \\  \\ \sf Using \ the \ identities \\ \rm \bullet ( x - y )^2 = x^2 + y^2 - 2xy  \\  \\  \\ \left( \dfrac{ \left[ ( 1 )^2 + \bigg(\dfrac{ \sin A }{ \cos A }\bigg)^2 - 2 ( 1 )\bigg( \dfrac{ \sin A }{ \cos A } \bigg)\right]}{ \left[ ( 1 )^2 + \bigg( \dfrac{ \cos A }{ \sin A } \bigg)^2 - 2 ( 1 ) \bigg( \dfrac{ \cos A }{ \sin A }\bigg) \right] }\right)

\displaystyle \sf \left( \dfrac{ 1 +\dfrac{ \sin^2 A}{ \cos^2 A} - \dfrac{ 2 \sin A}{ \cos A}}{1 + \dfrac{ \cos^2 A}{ \sin^2 A} - \dfrac{2 \cos A}{ \sin A}} \right) \\  \\  \sf By \; taking \; the \; respective \; LCM's  \\  \\  \\ \sf \left( \dfrac{ \dfrac{ \cos^2 A + \sin^2A - 2 \sin A \cos A}{ \cos^2 A}}{ \dfrac{ \sin^2 A + \cos^2 A - 2 \cos A \sin A }{ \sin^2 A}}\right) \\  \\ \textsf{The numerator of each fraction get's cancelled because they are alike } \\  \\  \\  \sf \left( \dfrac{ \dfrac{ 1}{ \cos^2 A}}{ \dfrac{1}{ \sin^2 A}} \right) \\  \\ \sf \dfrac{1}{ \cos^2 A} \times \dfrac{\sin^2 A}{1} \\  \\  \sf \dfrac{ \sin^2 A}{ \cos^2 A } \\  \\ \tt \implies \tan^2 A

LHS = RHS

Hence Proved !

Similar questions