1 + tan^2A/ 1 + cot^2A = (1 - tan^2/1 - cot^2A)^2 = tan^2 A .Prove this
Answers
Answered by
17
Question : -
Prove that : -
1 + tan² A/1 + cot² A = ( 1 - tan A/1 - cot A )² = tan² A .
ANSWER
Given : -
1 + tan² A/1 + cot² A = ( 1 - tan A/1 - cot A )² = tan² A .
Required to prove : -
- 1 + tan² A/1 + cot² A = tan² A
- ( 1 - tan A/1 - cot A )² = tan² A
Identities used : -
sin² A + cos² A = 1
Proof : -
1 + tan² A/1 + cot² A = ( 1 - tan A/1 - cot A )² = tan² A .
We need to prove that ;
1 + tan² A/1 + cot² A = tan² A
( 1 - tan A/1 - cot A )² = tan² A
So,
Let's consider the 1st part : -
Similarly,
Consider the 2nd part : -
LHS = RHS
Hence Proved !
Similar questions