[(1+tan^2A) /(1+cot^2A)]=[(1-tanA) /(1-cotA)]^2= tan^2A. solve it fully
Answers
Answered by
4
Given that:
1+tan² A1+cot²A=[1-tanA1-cotA]²=tan²A
We will first solve the equation on LHS
LHS:
= 1+tan²A / 1+cot²A
Using the trignometric identities we know that 1+tan²A= Sec²A and 1+cot²A= Cosec²A
= Sec²A/ Cosec²A
On taking the reciprocals we get
= Sin²A/Cos²A
= tan²A
RHS:
=(1-tanA)²/(1-cotA)²
Substituting the reciprocal value of tan A and cot A we get,
=(1-sinA/cosA)²/(1-cosA/sinA)²
=[(cosA-sinA)/cosA]²/ [(sinA-cos)/sinA)²
=(cosA-sinA)²×sin²A /Cos²A. /(sinA-cosA)²
=1×sin²A/Cos²A×1.
=tan
The values of LHS and RHS are same.
Hence proved✔✔
Similar questions