Math, asked by srchuh1, 2 days ago

1 + tan 2A.tan A = sec 2A​

Answers

Answered by AngelPurswani
0

Answer:

So by using the formula of tan2A and converting tan and sec in terms of sin and cos, we can prove that 1 + tan2A. tanA = sec2A.

Step-by-step explanation:

PLEASE MARK ME AS BRAINLIEST

Answered by mad210220
0

Given:

1 + tan 2A.tan A

To Prove:  

1 + tan 2A.tan A = sec 2A​

We need to Prove

Step-by-step explanation:

The proof is shown as follows:

  • Taking Left hand side equation

            1+tan2A.tanA

  • As we know from trigonometry that

            tan2A= 2\times tanA /(1-tan^2A)

  • Putting value of tan2A from step 2 into step 1 we get

           1+tan2A.tanA=1+(2\times tan^2A/(1-tan^2A) ) \\\\                     =(1-tan^2A + 2\times tan^2A)/(1-tan^2A)\\\\                     =(1+tan^2A)/(1-tan^2A)\\

  • Now converting tan into cos and sin

        As we can write tanA=sinA/cosA

         So now putting value of tanA in the last equation of Step 3

            1+tan2A.tanA=(1+(sin^2A/cos^2A))/(1-(sin^2A/cos^2A))\\    =(cos^2A + sin^2A)/(cos^2A - sin^2A) \times cosA/cosA

             As cos^2A+sin^A=1, So now our Left hand side equation is

             1/(cos^2A-Sin^2A)

  • As from trigonometry we can write

               cos2A=cos^2A-sin^2A  

  • Now putting the value of step 5 equation in the final equation of      left hand side we get

             1+tan2A.tanA=1/cos2A\\

             as sec2A=1/cos2A

            so,

            1+tan2A.tanA=sec2A

Proved: 1+tan2A.tanA=secA

     

Similar questions