Math, asked by bhanupriya0720, 9 months ago

1+tan^2Q / 1+ cot^2 = ( 1-tanQ/1-cotQ )^2​

Answers

Answered by Unni007
2

\bold{\frac{1+tan^2\theta}{1+cot^2\theta} = (\frac{1-tan\theta}{1-cot\theta})^2=tan^2\theta}

Let  \theta  be A

\boxed{\bold{\frac{1+tan^2A}{1+cot^2A} = (\frac{1-tanaA}{1-cotA})^2=tan^2A}}

At first,we have to prove that   {\bold{\frac{1+tan^2A}{1+cot^2A} =tan^2A}

(1)  {\bold{\frac{1+tan^2A}{1+cot^2A} =tan^2A}

Taking L.H.S,

{\bold{\frac{1+tan^2A}{1+cot^2A}}

[ 1+tan² A = sec² A ]

[ 1+cot² A = cosec² A ]

\implies{\bold{\frac{1+tan^2A}{1+cot^2A} =\frac{sec^2A}{cosec^2A}}

[ sec²A = 1/cos²A ]

[ cosec²A = 1 / sin²A ]

\frac{sec^2A}{cosec^2A}} = {\frac{1}{cos^2A}}\times{\frac{sin^2A}{1}}

[sin² A /cos² A= tan² A]

\boxed{\bold{\therefore\frac{1+tan^2A}{1+cot^2A} =tan^2A}}

Now, we have to prove that \bold{(\frac{1-tanA}{1-cotA})^2=tan^2A}}

(ii) \bold{(\frac{1-tanA}{1-cotA})^2=tan^2A}}

Taking L.H.S,

\bold{(\frac{1-tanA}{1-cotA})^2}

\implies\bold{\frac{1-\frac{sinA}{cosA}}{(1-\frac{cosA}{sinA})^2}}

\implies\bold{\frac{\frac{cosA-sinA}{cosA}}{(\frac{sinA-cosA}{sinA})^2}}

\implies\bold{\frac{\frac{1}{cosA}}{(\frac{1}{sinA})^2}}

\implies{(\frac{sinA}{cosA})^2

\implies(tanA)^2

\boxed{\bold{\therefore(\frac{1-tanA}{1-cotA})^2=tan^2A}}}

Hence Proved !!

Similar questions